5 research outputs found

    Intrinsic Bulk Quantum Oscillations in a Bulk Unconventional Insulator SmB6.

    Get PDF
    The finding of bulk quantum oscillations in the Kondo insulator SmB6 proved a considerable surprise. Subsequent measurements of bulk quantum oscillations in other correlated insulators including YbB12 lent support to our discovery of a class of bulk unconventional insulators that host bulk quantum oscillations. Here we perform a series of experiments to examine evidence for the intrinsic character of bulk quantum oscillations in floating zone-grown single crystals of SmB6 that have been the subject of our quantum oscillation studies. We present results of thermodynamic, transport, and composition analysis experiments on pristine floating zone-grown single crystals of SmB6 and compare quantum oscillations with metallic LaB6 and elemental aluminum. These results establish the intrinsic origin of quantum oscillations from the insulating bulk of floating zone-grown SmB6. The similarity of the Fermi surface in insulating SmB6 with the conduction-electron Fermi surface in metallic hexaborides is at the heart of a theoretical mystery

    Unconventional quantum vortex matter state hosts quantum oscillations in the underdoped high-temperature cuprate superconductors.

    Get PDF
    A central question in the underdoped cuprates pertains to the nature of the pseudogap ground state. A conventional metallic ground state of the pseudogap region has been argued to host quantum oscillations upon destruction of the superconducting order parameter by modest magnetic fields. Here, we use low applied measurement currents and millikelvin temperatures on ultrapure single crystals of underdoped [Formula: see text] to unearth an unconventional quantum vortex matter ground state characterized by vanishing electrical resistivity, magnetic hysteresis, and nonohmic electrical transport characteristics beyond the highest laboratory-accessible static fields. A model of the pseudogap ground state is now required to explain quantum oscillations that are hosted by the bulk quantum vortex matter state without experiencing sizable additional damping in the presence of a large maximum superconducting gap; possibilities include a pair density wave.Royal Society Winton Programme for the Physics of Sustainability Engineering and Physical Sciences Research Council (EPSRC; studentship and grant numbers EP/R513180/1, EP/M506485/1 and EP/P024947/1) European Research Council under the European Unions Seventh Framework Programme (Grant Agreement numbers 337425 and 772891). EPSRC Strategic Equipment Grant EP/M000524/1 Leverhulme Trust by way of the award of a Philip Leverhulme Prize. National Key Research and Development Program of China (grant no. 2016YFA0401704). Work performed at the National High Magnetic Field Laboratory (NHMFL) supported by NSF Cooperative Agreement DMR-1157490, the State of Florida, and the Department of Energy (DOE) DOE Basic Energy Sciences project: ‘Science of 100 tesla’

    Fermi surfaces in Kondo insulators

    Get PDF
    We report magnetic quantum oscillations measured using torque magnetisation in the Kondo insulator YbB12 and discuss the potential origin of the underlying Fermi surface. Observed quantum oscillations as well as complementary quantities such as a finite linear specific heat capacity in YbB12 exhibit similarities with the Kondo insulator SmB6, yet also crucial differences. Small heavy Fermi sections are observed in YbB12 with similarities to the neighbouring heavy fermion semimetallic Fermi surface, in contrast to large light Fermi surface sections in SmB6 which are more similar to the conduction electron Fermi surface. A rich spectrum of theoretical models is suggested to explain the origin across different Kondo insulating families of a bulk Fermi surface potentially from novel itinerant quasiparticles that couple to magnetic fields, yet do not couple to weak DC electric fields
    corecore