3,381 research outputs found

    Two-point motional Stark effect diagnostic for Madison Symmetric Torus

    Get PDF
    A high-precision spectral motional Stark effect (MSE) diagnostic provides internal magnetic field measurements for Madison Symmetric Torus (MST) plasmas. Currently, MST uses two spatial views-on the magnetic axis and on the midminor (off-axis) radius, the latter added recently. A new analysis scheme has been developed to infer both the pitch angle and the magnitude of the magnetic field from MSE spectra. Systematic errors are reduced by using atomic data from atomic data and analysis structure in the fit. Reconstructed current density and safety factor profiles are more strongly and globally constrained with the addition of the off-axis radius measurement than with the on-axis one only

    Improved Laboratory Transition Probabilities for Ce II, Application to the Cerium Abundances of the Sun and Five r-process Rich, Metal-Poor Stars, and Rare Earth Lab Data

    Full text link
    Recent radiative lifetime measurements accurate to +/- 5% using laser-induced fluorescence (LIF) on 43 even-parity and 15 odd-parity levels of Ce II have been combined with new branching fractions measured using a Fourier transform spectrometer (FTS) to determine transition probabilities for 921 lines of Ce II. This improved laboratory data set has been used to determine a new solar photospheric Ce abundance, log epsilon = 1.61 +/- 0.01 (sigma = 0.06 from 45 lines), a value in excellent agreement with the recommended meteoritic abundance, log epsilon = 1.61 +/- 0.02. Revised Ce abundances have also been derived for the r-process-rich metal-poor giant stars BD+17 3248, CS 22892-052, CS 31082-001, HD 115444 and HD 221170. Between 26 and 40 lines were used for determining the Ce abundance in these five stars, yielding a small statistical uncertainty of 0.01 dex similar to the Solar result. The relative abundances in the metal-poor stars of Ce and Eu, a nearly pure r-process element in the Sun, matches r-process only model predictions for Solar System material. This consistent match with small scatter over a wide range of stellar metallicities lends support to these predictions of elemental fractions. A companion paper includes an interpretation of these new precision abundance results for Ce as well as new abundance results and interpretations for Pr, Dy and Tm.Comment: 84 pages, 8 Figures, 14 Tables; To appear in the Astrophysical Journal Supplemen

    Multicriteria methoden

    Get PDF

    Fe I Oscillator Strengths for the Gaia-ESO Survey

    Full text link
    The Gaia-ESO Public Spectroscopic Survey (GES) is conducting a large-scale study of multi-element chemical abundances of some 100 000 stars in the Milky Way with the ultimate aim of quantifying the formation history and evolution of young, mature and ancient Galactic populations. However, in preparing for the analysis of GES spectra, it has been noted that atomic oscillator strengths of important Fe I lines required to correctly model stellar line intensities are missing from the atomic database. Here, we present new experimental oscillator strengths derived from branching fractions and level lifetimes, for 142 transitions of Fe I between 3526 {\AA} and 10864 {\AA}, of which at least 38 are urgently needed by GES. We also assess the impact of these new data on solar spectral synthesis and demonstrate that for 36 lines that appear unblended in the Sun, Fe abundance measurements yield a small line-by-line scatter (0.08 dex) with a mean abundance of 7.44 dex in good agreement with recent publications.Comment: Accepted for publication in Mon. Not. R. Astron. So
    corecore