2 research outputs found

    Fractionalization of holographic Fermi surfaces

    Full text link
    Zero temperature states of matter are holographically described by a spacetime with an asymptotic electric flux. This flux can be sourced either by explicit charged matter fields in the bulk, by an extremal black hole horizon, or by a combination of the two. We refer to these as mesonic, fully fractionalized and partially fractionalized phases of matter, respectively. By coupling a charged fluid of fermions to an asymptotically AdS_4 Einstein-Maxwell-dilaton theory, we exhibit quantum phase transitions between all three of these phases. The onset of fractionalization can be either a first order or continuous phase transition. In the latter case, at the quantum critical point the theory displays an emergent Lifshitz scaling symmetry in the IR.Comment: 1+24 pages. 7 figure

    Strange metals and the AdS/CFT correspondence

    Get PDF
    I begin with a review of quantum impurity models in condensed matter physics, in which a localized spin degree of freedom is coupled to an interacting conformal field theory in d = 2 spatial dimensions. Their properties are similar to those of supersymmetric generalizations which can be solved by the AdS/CFT correspondence; the low energy limit of the latter models is described by a AdS2 geometry. Then I turn to Kondo lattice models, which can be described by a mean- field theory obtained by a mapping to a quantum impurity coupled to a self-consistent environment. Such a theory yields a 'fractionalized Fermi liquid' phase of conduction electrons coupled to a critical spin liquid state, and is an attractive mean-field theory of strange metals. The recent holographic description of strange metals with a AdS2 x R2 geometry is argued to be related to such mean-field solutions of Kondo lattice models.Comment: 19 pages, 4 figures; Plenary talk at Statphys24, Cairns, Australia, July 2010; (v2) added refs; (v3) more ref
    corecore