1,077 research outputs found

    Microwave cavity light shining through a wall optimization and experiment

    Full text link
    It has been proposed that microwave cavities can be used in a photon regeneration experiment to search for hidden sector photons. Using two isolated cavities, the presence of hidden sector photons could be inferred from a 'light shining through a wall' phenomenon. The sensitivity of the experiment has strong a dependence on the geometric construction and electromagnetic mode properties of the two cavities. In this paper we perform an in depth investigation to determine the optimal setup for such an experiment. We also describe the results of our first microwave cavity experiment to search for hidden sector photons. The experiment consisted of two cylindrical copper cavities stacked axially inside a single vacuum chamber. At a hidden sector photon mass of 37.78 micro eV we place an upper limit on the kinetic mixing parameter chi = 2.9 * 10^(-5). Whilst this result lies within already established limits our experiment validates the microwave cavity `light shining through a wall' concept. We also show that the experiment has great scope for improvement, potentially able to reduce the current upper limit on the mixing parameter chi by several orders of magnitude.Comment: To be published in PR

    Quasinormal modes of asymptotically flat rotating black holes

    Full text link
    We study the main properties of general linear perturbations of rotating black holes in asymptotically flat higher-dimensional spacetimes. In particular, we determine the quasinormal mode (QNM) spectrum of singly spinning and equal angular momenta Myers-Perry black holes (MP BHs). Emphasis is also given to the timescale of the ultraspinning and bar-mode instabilities in these two families of MP BHs. For the bar-mode instabilities in the singly spinning MP BH, we find excellent agreement with our linear analysis and the non-linear time evolution of Shibata and Yoshino for d=6,7 spacetime dimensions. We find that d=5 singly spinning BHs are linearly stable. In the context of studying general relativity in the large dimension limit, we obtain the QNM spectrum of Schwarzschild BHs and rotating MP BHs for large dimensions. We identify two classes of modes. For large dimensions, we find that in the limit of zero rotation, unstable modes of the MP BHs connect to a class of Schwarzschild QNMs that saturate to finite values.Comment: 52 pages. 25 figure

    High Resolution Flicker-Noise-Free Frequency Measurements of Weak Microwave Signals

    Full text link
    Amplification is usually necessary when measuring the frequency instability of microwave signals. In this work, we develop a flicker noise free frequency measurement system based on a common or shared amplifier. First, we show that correlated flicker phase noise can be cancelled in such a system. Then we compare the new system with the conventional by simultaneously measuring the beat frequency from two cryogenic sapphire oscillators with parts in 10^15 fractional frequency instability. We determine for low power, below -80 dBm, the measurements were not limited by correlated noise processes but by thermal noise of the readout amplifier. In this regime, we show that the new readout system performs as expected and at the same level as the standard system but with only half the number of amplifiers. We also show that, using a standard readout system, the next generation of cryogenic sapphire oscillators could be flicker phase noise limited when instability reaches parts in 10^16 or betterComment: Accepted for publication in IEEE Transactions on Microwave Theory & Technique

    Detrapping and retrapping of free carriers in nominally pure single crystal GaP, GaAs and 4H-SiC semiconductors under light illumination at cryogenic temperatures

    Full text link
    We report on extremely sensitive measurements of changes in the microwave properties of high purity non-intentionally-doped single-crystal semiconductor samples of gallium phosphide, gallium arsenide and 4H-silicon carbide when illuminated with light of different wavelengths at cryogenic temperatures. Whispering gallery modes were excited in the semiconductors whilst they were cooled on the coldfinger of a single-stage cryocooler and their frequencies and Q-factors measured under light and dark conditions. With these materials, the whispering gallery mode technique is able to resolve changes of a few parts per million in the permittivity and the microwave losses as compared with those measured in darkness. A phenomenological model is proposed to explain the observed changes, which result not from direct valence to conduction band transitions but from detrapping and retrapping of carriers from impurity/defect sites with ionization energies that lay in the semiconductor band gap. Detrapping and retrapping relaxation times have been evaluated from comparison with measured data.Comment: 7 pages, 6 figure

    Modified permittivity observed in bulk Gallium Arsenide and Gallium Phosphide samples at 50 K using the Whispering Gallery mode method

    Full text link
    Whispering Gallery modes in bulk cylindrical Gallium Arsenide and Gallium Phosphide samples have been examined both in darkness and under white light at 50 K. In both samples we observed change in permittivity under light and dark conditions. This results from a change in the polarization state of the semiconductor, which is consistent with a free electron-hole creation/recombination process. The permittivity of the semiconductor is modified by free photocarriers in the surface layers of the sample which is the region sampled by Whispering Gallery modes.Comment: 8 pages, 3 figure

    Regulation of pro-apoptotic phosphorylation of Kv2.1 K<sup>+</sup> channels

    Get PDF
    Caspase activity during apoptosis is inhibited by physiological concentrations of intracellular K+. To enable apoptosis in injured cortical and hippocampal neurons, cellular loss of this cation is facilitated by the insertion of Kv2.1 K+ channels into the plasma membrane via a Zn2+ /CaMKII/SNARE-dependent process. Pro-apoptotic membrane insertion of Kv2.1 requires the dual phosphorylation of the channel by Src and p38 at cytoplasmic N- and C- terminal residues Y124 and S800, respectively. In this study, we investigate if these phosphorylation sites are mutually co-regulated, and whether putative N- and C-terminal interactions, possibly enabled by Kv2.1 intracellular cysteine residues C73 and C710, influence the phosphorylation process itself. Studies were performed with recombinant wild type and mutant Kv2.1 expressed in Chinese hamster ovary (CHO) cells. Using immunoprecipitated Kv2.1 protein and phospho-specific antibodies, we found that an intact Y124 is required for p38 phosphorylation of S800, and, importantly, that Src phosphorylation of Y124 facilitates the action of the p38 at the S800 residue. Moreover, the actions of Src on Kv2.1 are substantially decreased in the non-phosphorylatable S800A channel mutant. We also observed that mutations of either C73 or C710 residues decreased the p38 phosphorylation at S800 without influencing the actions of Src on tyrosine phosphorylation of Kv2.1. Surprisingly, however, apoptotic K+ currents were suppressed only in cells expressing the Kv2.1(C73A) mutant but not in those transfected with Kv2.1(C710A), suggesting a possible structural alteration in the C-terminal mutant that facilitates membrane insertion. These results show that intracellular N-terminal domains critically regulate phosphorylation of the C-terminal of Kv2.1, and vice versa, suggesting possible new avenues for modifying the apoptotic insertion of these channels during neurodegenerative processes

    Link Between Mathematics Pedagogy and Missouri Assessment

    Get PDF
    Abstract The researcher studied the correlation between mathematics pedagogy and fifth grade test scores on the Missouri Achievement Program Mathematics Test, utilizing data from 2019 to avoid the effects Covid-19 had on the education system. All fifth graders attending public schools in Saint Louis County were studied using the data released by the Department of Elementary and Secondary Education. The first research question pertained to a correlation between mathematics pedagogy (Spiral, Strand or Blended Method) and overall fifth grade test scores on the Missouri Assessment Program Mathematics Test. The second question tested whether correlation existed between mathematics pedagogy and test scores for Lower SES students. The third question tested whether correlation existed between mathematics pedagogy and Black fifth grade test scores on the Missouri Assessment Program Mathematics Test. The final research question tested whether pedagogy closed the achievement gap between Low SES, minority students and the overall population on the fifth grade MAP Mathematics Test (MAPMT). The researcher found the Strand Method correlated with higher test scores for the overall population and the Low SES population, but the Black population scored best utilizing the Spiral Method. The Blended Method had the lowest difference between all subgroups. The researcher recommends that districts adopt a methodical mathematics program that utilizes the Strand Method. Further, the researcher suggests students be grouped by both learning style and ability. Mastery is required before students proceed to subsequent concepts. Keywords: mathematics, pedagogy, MA

    OAK Fund Annual Report: 2015-2016

    Get PDF
    2016 Annual report of the OAK FundThe Open Access to Knowledge Fund (OAK Fund) at Texas A&M University is a program for underwriting publication fees for scholarly journal articles, book chapters, and monographs in fully Open Access publications. The OAK Fund was established in 2013 to help fulfill Texas A&M University’s commitment to the “Compact for Open Access Publishing Equity.” The goals of OAK Fund at Texas A&M University are to support and encourage: (1) Texas A&M University faculty, research staff, and graduate students (as of fiscal year 2015/2016) who lack another source of funding to publish in Open Access venues; (2) innovative scholarly publishing that takes advantage of digital networking technologies for distribution and Open Access; and (3) greater public access to Texas A&M University research and scholarship. The OAK Fund has been available to Texas A&M University authors for three years. In the 2015/2016 fiscal year, the Vice President for Research (VPR) and the Texas A&M University Libraries committed 35,000and35,000 and 50,000 to the fund, respectively. For the first time, additional funds were allocated to support graduate student authors; the Office of Graduate and Professional Studies (OGAPS) and the VPR each committed $2,500. This document reports on outcomes of the 2015/2016 OAK Fund program
    corecore