42 research outputs found
Recommended from our members
Recombinant Goose Circoviruses Circulating in Domesticated and Wild Geese in Poland
Circoviruses are circular single-stranded DNA (ssDNA) viruses that infect a variety of animals, both domestic and wild. Circovirus infection in birds is associated with immunosuppression and this in turn predisposes the infected animals to secondary infections that can lead to mortality. Farmed geese (Anser anser) in many parts of the world are infected with circoviruses. The majority of the current genomic information for goose circoviruses (GoCVs) (n = 40) are from birds sampled in China and Taiwan, and only two genome sequences are available from Europe (Germany and Poland). In this study, we sampled 23 wild and 19 domestic geese from the GopĆo Lake area in Poland. We determined the genomes of GoCV from 21 geese; 14 domestic Greylag geese (Anser anser), three wild Greylag geese (A. anser), three bean geese (A. fabalis), and one white fronted goose (A. albifrons). These genomes share 83â95% nucleotide pairwise identities with previously identified GoCV genomes, most are recombinants with exchanged fragment sizes up to 50% of the genome. Higher diversity levels can be seen within the genomes from domestic geese compared with those from wild geese. In the GoCV capsid protein (cp) and replication associated protein (rep) gene sequences we found that episodic positive selection appears to largely mirror those of beak and feather disease virus and pigeon circovirus. Analysis of the secondary structure of the ssDNA genome revealed a conserved stem-loop structure with the G-C rich stem having a high degree of negative selection on these nucleotides
Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale
© 2018 International Society for Microbial Ecology All rights reserved. Disease emergence events regularly result from human activities such as agriculture, which frequently brings large populations of genetically uniform hosts into contact with potential pathogens. Although viruses cause nearly 50% of emerging plant diseases, there is little systematic information about virus distribution across agro-ecological interfaces and large gaps in understanding of virus diversity in nature. Here we applied a novel landscape-scale geometagenomics approach to examine relationships between agricultural land use and distributions of plant-associated viruses in two Mediterranean-climate biodiversity hotspots (Western Cape region of South Africa and RhÎne river delta region of France). In total, we analysed 1725 geo-referenced plant samples collected over two years from 4.5 à 4.5 km 2 grids spanning farmlands and adjacent uncultivated vegetation. We found substantial virus prevalence (25.8-35.7%) in all ecosystems, but prevalence and identified family-level virus diversity were greatest in cultivated areas, with some virus families displaying strong agricultural associations. Our survey revealed 94 previously unknown virus species, primarily from uncultivated plants. This is the first effort to systematically evaluate plant-associated viromes across broad agro-ecological interfaces. Our findings indicate that agriculture substantially influences plant virus distributions and highlight the extent of current ignorance about the diversity and roles of viruses in nature
Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale
Disease emergence events regularly result from human activities such as agriculture, which
frequently brings large populations of genetically uniform hosts into contact with potential
pathogens. Although viruses cause nearly 50% of emerging plant diseases, there is little systematic
information about virus distribution across agro-ecological interfaces and large gaps in understanding
of virus diversity in nature. Here we applied a novel landscape-scale geometagenomics
approach to examine relationships between agricultural land use and distributions of plantassociated
viruses in two Mediterranean-climate biodiversity hotspots (Western Cape region of
South Africa and RhĂŽne river delta region of France). In total, we analysed 1725 geo-referenced plant
samples collected over two years from 4.5 Ă 4.5 km2 grids spanning farmlands and adjacent
uncultivated vegetation. We found substantial virus prevalence (25.8â35.7%) in all ecosystems, but
prevalence and identified family-level virus diversity were greatest in cultivated areas, with some
virus families displaying strong agricultural associations. Our survey revealed 94 previously
unknown virus species, primarily from uncultivated plants. This is the first effort to systematically
evaluate plant-associated viromes across broad agro-ecological interfaces. Our findings indicate that
agriculture substantially influences plant virus distributions and highlight the extent of current
ignorance about the diversity and roles of viruses in nature
Large-scale mass wasting in the western Indian Ocean constrains onset of East African rifting
Faulting and earthquakes occur extensively along the flanks of the East African Rift System, including an offshore branch in the western Indian Ocean, resulting in remobilization of sediment in the form of landslides. To date, constraints on the occurrence of submarine landslides at margin scale are lacking, leaving unanswered a link between rifting and slope instability. Here, we show the first overview of landslide deposits in the post-Eocene stratigraphy of the Tanzania margin and we present the discovery of one of the biggest landslides on Earth: the Mafia mega-slide. The emplacement of multiple landslides, including the Mafia mega-slide, during the early-mid Miocene is coeval with cratonic rifting in Tanzania, indicating that plateau uplift and rifting in East Africa triggered large and potentially tsunamigenic landslides likely through earthquake activity and enhanced sediment supply. This study is a first step to evaluate the risk associated with submarine landslides in the region
Symptom evolution following the emergence of maize streak virus
For pathogens infecting single host species evolutionary trade-offs have previously
been demonstrated between pathogen-induced mortality rates and transmission rates. It remains
unclear, however, how such trade-offs impact sub-lethal pathogen-inflicted damage, and whether
these trade-offs even occur in broad host-range pathogens. Here, we examine changes over the
past 110 years in symptoms induced in maize by the broad host-range pathogen, maize streak virus
(MSV). Specifically, we use the quantified symptom intensities of cloned MSV isolates in
differentially resistant maize genotypes to phylogenetically infer ancestral symptom intensities and
check for phylogenetic signal associated with these symptom intensities. We show that whereas
symptoms reflecting harm to the host have remained constant or decreased, there has been an
increase in how extensively MSV colonizes the cells upon which transmission vectors feed
Multi-stage alteration at Nifty copper deposit resolved via accessory mineral dating and trace elements
The sediment hosted Nifty prospect is one of the most prominent Cu deposits in the Neoproterozoic Paterson Province, which girdles the eastern margin of the Archean Pilbara Craton in Western Australia. The timing of mineralization at Nifty has proved challenging to constrain despite several attempts to date it using a range of isotopic methods, including muscovite 40Ar/39Ar (total fusion) and solution ICP-MS apatite UâPb geochronology. The region preserves a protracted and complex geological history, with potential for several generations of fluid flow/mineralisation, which necessitates a texturally-controlled geochronology approach. Here, we report in situ apatite and monazite UâPb isotopes complemented with trace elements from both mineralized veins and matrix of the sedimentary host-rock collected via laser ablation split stream inductively coupled plasma mass spectrometry (LASS-ICP-MS). Apatite grains from pyrite- and quartz-bearing veins are enriched in middle rare earth elements (MREE) with prominent convex-upward chondrite-normalized REE profiles. This chemical signature is similar to hydrothermal apatite from the Olympic Dam high-grade bornite Cu deposit, commonly associated with MREE-enriched, lower salinity fluids, and alkaline pH conditions capable of mobilizing Cu. Hydrothermal apatite from pyrite-bearing veins associated with euhedral, concentrically zoned pyrite yields lower intercept ages of ca 810 Ma, whereas hydrothermal apatite from quartz-pyrite veins associated with pyrite replacement microstructures have variable apparent ages. Monazite grains on the margins of pyrite-bearing veins (along micro-cracks) and monazite associated with chalcopyrite in veinlets yield a weighted mean 238U/206Pb age of ca 640 Ma. These results necessitate at least two distinct hydrothermal/fluid flow events related to the formation of the Nifty Cu deposit, with the former being temporally associated with ca 830 Ma mafic intrusions. Evidence for the latter hydrothermal event is cryptic, being highly localised at a grain scale, but is broadly coeval with ca 640 Ma granitic magmatism linked to CuâAu mineralization elsewhere in the Paterson Orogen (e.g., Telfer & Winu deposits)
Recombinant goose circoviruses circulating in domesticated and wild geese in Poland
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. Circoviruses are circular single-stranded DNA (ssDNA) viruses that infect a variety of animals, both domestic and wild. Circovirus infection in birds is associated with immunosuppression and this in turn predisposes the infected animals to secondary infections that can lead to mortality. Farmed geese (Anser anser) in many parts of the world are infected with circoviruses. The majority of the current genomic information for goose circoviruses (GoCVs) (n = 40) are from birds sampled in China and Taiwan, and only two genome sequences are available from Europe (Germany and Poland). In this study, we sampled 23 wild and 19 domestic geese from the GopĆo Lake area in Poland. We determined the genomes of GoCV from 21 geese; 14 domestic Greylag geese (Anser anser), three wild Greylag geese (A. anser), three bean geese (A. fabalis), and one white fronted goose (A. albifrons). These genomes share 83â95% nucleotide pairwise identities with previously identified GoCV genomes, most are recombinants with exchanged fragment sizes up to 50% of the genome. Higher diversity levels can be seen within the genomes from domestic geese compared with those from wild geese. In the GoCV capsid protein (cp) and replication associated protein (rep) gene sequences we found that episodic positive selection appears to largely mirror those of beak and feather disease virus and pigeon circovirus. Analysis of the secondary structure of the ssDNA genome revealed a conserved stem-loop structure with the G-C rich stem having a high degree of negative selection on these nucleotides
Recombinant Goose Circoviruses Circulating in Domesticated and Wild Geese in Poland
Circoviruses are circular single-stranded DNA (ssDNA) viruses that infect a variety of animals, both domestic and wild. Circovirus infection in birds is associated with immunosuppression and this in turn predisposes the infected animals to secondary infections that can lead to mortality. Farmed geese (Anser anser) in many parts of the world are infected with circoviruses. The majority of the current genomic information for goose circoviruses (GoCVs) (n = 40) are from birds sampled in China and Taiwan, and only two genome sequences are available from Europe (Germany and Poland). In this study, we sampled 23 wild and 19 domestic geese from the GopĆo Lake area in Poland. We determined the genomes of GoCV from 21 geese; 14 domestic Greylag geese (Anser anser), three wild Greylag geese (A. anser), three bean geese (A. fabalis), and one white fronted goose (A. albifrons). These genomes share 83â95% nucleotide pairwise identities with previously identified GoCV genomes, most are recombinants with exchanged fragment sizes up to 50% of the genome. Higher diversity levels can be seen within the genomes from domestic geese compared with those from wild geese. In the GoCV capsid protein (cp) and replication associated protein (rep) gene sequences we found that episodic positive selection appears to largely mirror those of beak and feather disease virus and pigeon circovirus. Analysis of the secondary structure of the ssDNA genome revealed a conserved stem-loop structure with the G-C rich stem having a high degree of negative selection on these nucleotides