13 research outputs found
BRAF kinase activation via chromosomal rearrangement in radiation-induced and sporadic thyroid cancer
Activating point mutations of the BRAF gene have been recently described in a variety of human tumors. In a study published in the Journal of Clinical Investigation, we reported a novel mechanism of activation of this gene via paracentric inversion of chromosome 7q. The fusion protein, AKAP9-BRAF, contains the intact kinase domain and lacks the autoinhibitory N-terminal portion of BRAF. It exhibited constitutive activation of BRAF kinase and was transforming for NIH3T3 cells. This finding represents the first demonstration of RAF activation by chromosomal rearrangement in human tumors. AKAP9-BRAF was more common in radiation-induced thyroid tumors, whereas point mutations of BRAF predominated in sporadic tumors of the same type, demonstrating the association between environmental factors and specific mechanisms of BRAF activation
Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer
Genes crucial for cancer development can be mutated via various mechanisms, which may reflect the nature of the mutagen. In thyroid papillary carcinomas, mutations of genes coding for effectors along the MAPK pathway are central for transformation. BRAF point mutation is most common in sporadic tumors. By contrast, radiation-induced tumors are associated with paracentric inversions activating the receptor tyrosine kinases RET and NTRK1. We report here a rearrangement of BRAF via paracentric inversion of chromosome 7q resulting in an in-frame fusion between exons 1–8 of the AKAP9 gene and exons 9–18 of BRAF. The fusion protein contains the protein kinase domain and lacks the autoinhibitory N-terminal portion of BRAF. It has elevated kinase activity and transforms NIH3T3 cells, which provides evidence, for the first time to our knowledge, of in vivo activation of an intracellular effector along the MAPK pathway by recombination. The AKAP9-BRAF fusion was preferentially found in radiation-induced papillary carcinomas developing after a short latency, whereas BRAF point mutations were absent in this group. These data indicate that in thyroid cancer, radiation activates components of the MAPK pathway primarily through chromosomal paracentric inversions, whereas in sporadic forms of the disease, effectors along the same pathway are activated predominantly by point mutations