12 research outputs found

    DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations

    Full text link
    A new Monte Carlo (MC) algorithm, the `dose planning method' (DPM), and its associated computer program for simulating the transport of electrons and photons in radiotherapy class problems employing primary electron beams, is presented. DPM is intended to be a high-accuracy MC alternative to the current generation of treatment planning codes which rely on analytical algorithms based on an approximate solution of the photon/electron Boltzmann transport equation. For primary electron beams, DPM is capable of computing 3D dose distributions (in 1 mm3 voxels) which agree to within 1% in dose maximum with widely used and exhaustively benchmarked general-purpose public-domain MC codes in only a fraction of the CPU time. A representative problem, the simulation of 1 million 10 MeV electrons impinging upon a water phantom of 1283 voxels of 1 mm on a side, can be performed by DPM in roughly 3 min on a modern desktop workstation. DPM achieves this performance by employing transport mechanics and electron multiple scattering distribution functions which have been derived to permit long transport steps (of the order of 5 mm) which can cross heterogeneity boundaries. The underlying algorithm is a `mixed' class simulation scheme, with differential cross sections for hard inelastic collisions and bremsstrahlung events described in an approximate manner to simplify their sampling. The continuous energy loss approximation is employed for energy losses below some predefined thresholds, and photon transport (including Compton, photoelectric absorption and pair production) is simulated in an analogue manner. The δ-scattering method (Woodcock tracking) is adopted to minimize the computational costs of transporting photons across voxels.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48969/2/m00815.pd

    SPLENIC VOLUME CHANGE AND THERAPUETIC RESPONSE IN PATIENTS TREATED WITH RADIOMMUNOCONJUGATES SPLENIC VOLUME CHANGE AND THERAPUETIC RESPONSE IN PATIENTS TREATED WITH RADIOIMMUNOCONJUGATES

    No full text
    ABSTRACT Splenomegaly is frequently found in non-Hodgkin's lymphoma (NHL) patients. This study evaluated the implications of splenic volume change in response to radioimmunotherapy (RIT). Methods: Twenty-nine NHL patients treated with radiolabeled-Lym-1 and 9 breast cancer patients (reference group) treated with radiolabeled-ChL6, BrE-3 or m170 were analyzed using CT splenic images obtained before and after RIT. Patient-specific radiation doses to spleen were determined using actual splenic volume determined by CT and body weight. Results: In 13 of 29 NHL patients who had splenic volume ≤310 ml, there was no or small change (-23 to 15 mL) in splenic volume, despite splenic doses as high as 14.4 Gy. Similarly, in a reference group of 9 breast cancer patients, there was no or small change (-5 to 13 mL), despite splenic doses as high as 11.4 Gy. In contrast, 13 of 29 NHL patients who had splenic volume 380-1400 mL, splenic volume decreased by 68 to 548 mL despite splenic doses as low as 1.40 Gy. Ten of 29 NHL patients with greater than a 15% decrease in splenic volume after RIT had nodal tumor regression (5 CR, 5 PR). In the remaining 19 NHL patients with less than a 15% decrease in splenic volume after RIT, there were 7 non-responders (5 CR and 7 PR). Conclusion: Splenic volume changes were found in NHL patients with splenomegaly. These splenic volume changes is likely due to therapeutic effect on malignant lymphocytes associated with splenomegaly. Nodal tumor response was more likely when splenomegaly decreased after RIT
    corecore