24,551 research outputs found
A BeppoSAX observation of the supersoft source 1E 0035.4-7230
Results from a 37,000 s BeppoSAX Low-Energy Concentrator Spectrometer (LECS)
observation of the supersoft source SMC 13 (=1E 0035.4-7230) in the Small
Magellanic Cloud are reported. The BeppoSAX spectrum is fitted either with a
blackbody spectrum with an effective temperature kT = 26-58 eV, an LTE white
dwarf atmosphere spectrum with kT = 35-50 eV, or a non-LTE white dwarf
atmosphere spectrum with kT = 25-32 eV. The bolometric luminosity is < 8 10^37
erg s-1 and < 3 10^37 erg s^-1 for the LTE and the non-LTE spectrum. We also
applied a spectral fit to combined spectra obtained with BeppoSAX LECS and with
ROSAT PSPC. The kT derived for the non-LTE spectrum is 27-29 eV, the bolometric
luminosity is 1.1-1.2 10^37 erg s^-1. We can exclude any spectrally hard
component with a luminosity > 2 10^35 erg s^-1 (for a bremmstrahlung with a
temperature of 0.5 keV) at a distance of 60 kpc. The LTE temperature is
therefore in the range 5.5+/-0.2 10^5 K and the non-LTE temperature in the
range 3.25+/-0.16 10^5 K. Assuming the source is on the stability line for
atmospheric nuclear burning, we constrain the white dwarf mass from the LTE and
the non-LTE fit to ~1.1 M-solar and ~0.9 M-solar respectively. However, the
temperature and luminosity derived with the non-LTE model for 1E 0035.4-7230 is
consistent with a lower mass M~0.6-0.7 M-solar white dwarf as predicted by Sion
and Starrfield (1994). At the moment, neither of these two alternatives for the
white dwarf mass can be excluded.Comment: 6 pages, accepted by A&A March 30th 199
Luminous supersoft X-ray emission from the recurrent nova U Scorpii
BeppoSAX detected luminous 0.2-2.0 keV supersoft X-ray emission from the
recurrent nova U Sco ~19-20 days after the peak of the optical outburst in
February 1999. U Sco is the first recurrent nova to be observed during a
luminous supersoft X-ray phase. Non-LTE white dwarf atmosphere spectral models
(together with a ~0.5 keV optically thin thermal component) were fitted to the
BeppoSAX spectrum. We find that the fit is acceptable assuming enriched He and
an enhanced N/C ratio. This implies that the CNO cycle was active during the
outburst, in agreement with a thermonuclear runaway scenario. The best-fit
temperature is ~9 10^5 K and the bolometric luminosity those predicted for
steady nuclear burning on a WD close to the Chandrasekhar mass. The fact that
U~Sco was detected as a supersoft X-ray source is consistent with steady
nuclear burning continuing for at least one month after the outburst. This
means that only a fraction of the previously accreted H and He was ejected
during the outburst and that the WD can grow in mass, ultimately reaching the
Chandrasekhar limit. This makes U~Sco a candidate type Ia supernova progenitor.Comment: 4 pages, accepted by A&A Letters 15 June 199
Nonlinear magnetoplasmons in strongly coupled Yukawa plasmas
The existence of plasma oscillations at multiples of the magnetoplasmon
frequency in a strongly coupled two-dimensional magnetized Yukawa plasma is
reported, based on extensive molecular dynamics simulations. These modes are
the analogues of Bernstein modes which are renormalized by strong interparticle
correlations. Their properties are theoretically explained by a dielectric
function incorporating the combined effect of a magnetic field, strong
correlations and finite temperature
Phase transitions in diluted negative-weight percolation models
We investigate the geometric properties of loops on two-dimensional lattice
graphs, where edge weights are drawn from a distribution that allows for
positive and negative weights. We are interested in the appearance of spanning
loops of total negative weight. The resulting percolation problem is
fundamentally different from conventional percolation, as we have seen in a
previous study of this model for the undiluted case.
Here, we investigate how the percolation transition is affected by additional
dilution. We consider two types of dilution: either a certain fraction of edges
exhibit zero weight, or a fraction of edges is even absent. We study these
systems numerically using exact combinatorial optimization techniques based on
suitable transformations of the graphs and applying matching algorithms. We
perform a finite-size scaling analysis to obtain the phase diagram and
determine the critical properties of the phase boundary.
We find that the first type of dilution does not change the universality
class compared to the undiluted case whereas the second type of dilution leads
to a change of the universality class.Comment: 8 pages, 7 figure
Chaotic Quantum Decay in Driven Biased Optical Lattices
Quantum decay in an ac driven biased periodic potential modeling cold atoms
in optical lattices is studied for a symmetry broken driving. For the case of
fully chaotic classical dynamics the classical exponential decay is quantum
mechanically suppressed for a driving frequency \omega in resonance with the
Bloch frequency \omega_B, q\omega=r\omega_B with integers q and r.
Asymptotically an algebraic decay ~t^{-\gamma} is observed. For r=1 the
exponent \gamma agrees with as predicted by non-Hermitian random matrix
theory for q decay channels. The time dependence of the survival probability
can be well described by random matrix theory. The frequency dependence of the
survival probability shows pronounced resonance peaks with sub-Fourier
character.Comment: 7 pages, 5 figure
Domain-Wall Energies and Magnetization of the Two-Dimensional Random-Bond Ising Model
We study ground-state properties of the two-dimensional random-bond Ising
model with couplings having a concentration of antiferromagnetic
and of ferromagnetic bonds. We apply an exact matching algorithm which
enables us the study of systems with linear dimension up to 700. We study
the behavior of the domain-wall energies and of the magnetization. We find that
the paramagnet-ferromagnet transition occurs at compared to
the concentration at the Nishimory point, which means that the
phase diagram of the model exhibits a reentrance. Furthermore, we find no
indications for an (intermediate) spin-glass ordering at finite temperature.Comment: 7 pages, 12 figures, revTe
Maximum flow and topological structure of complex networks
The problem of sending the maximum amount of flow between two arbitrary
nodes and of complex networks along links with unit capacity is
studied, which is equivalent to determining the number of link-disjoint paths
between and . The average of over all node pairs with smaller degree
is for large with a constant implying that the statistics of is related to the
degree distribution of the network. The disjoint paths between hub nodes are
found to be distributed among the links belonging to the same edge-biconnected
component, and can be estimated by the number of pairs of edge-biconnected
links incident to the start and terminal node. The relative size of the giant
edge-biconnected component of a network approximates to the coefficient .
The applicability of our results to real world networks is tested for the
Internet at the autonomous system level.Comment: 7 pages, 4 figure
Fractal dimension of domain walls in the Edwards-Anderson spin glass model
We study directly the length of the domain walls (DW) obtained by comparing
the ground states of the Edwards-Anderson spin glass model subject to periodic
and antiperiodic boundary conditions. For the bimodal and Gaussian bond
distributions, we have isolated the DW and have calculated directly its fractal
dimension . Our results show that, even though in three dimensions
is the same for both distributions of bonds, this is clearly not the case for
two-dimensional (2D) systems. In addition, contrary to what happens in the case
of the 2D Edwards-Anderson spin glass with Gaussian distribution of bonds, we
find no evidence that the DW for the bimodal distribution of bonds can be
described as a Schramm-Loewner evolution processes.Comment: 6 pages, 5 figures. Accepted for publication in PR
- …