27,350 research outputs found
Comment on `Glassy Transition in a Disordered Model for the RNA Secondary Structure'
In cond-mat/9907125 the low-temperature behavior of a model for RNA secondary
structure was studied. It is claimed that the model exhibits a breaking of the
replica symmetry, since the width of the distribution P(q) of overlaps may
converge to a finite value at T=0. The authors used an exact enumeration method
to obtain all ground states for a given RNA sequence. Because of the
exponential growing degeneracy, only sequences up to length L=256 could be
studied.
Here it is shown that, in contrast to the previous results, by going to much
larger sizes as L=2000 the variance coverges towards zero, i.e. P(q) is a
delta-function in the thermodynamic limit.Comment: completely rewritten, comment to cond-mat/9907125 (PRL 84, 2026
Analysis of the loop length distribution for the negative weight percolation problem in dimensions d=2 through 6
We consider the negative weight percolation (NWP) problem on hypercubic
lattice graphs with fully periodic boundary conditions in all relevant
dimensions from d=2 to the upper critical dimension d=6. The problem exhibits
edge weights drawn from disorder distributions that allow for weights of either
sign. We are interested in in the full ensemble of loops with negative weight,
i.e. non-trivial (system spanning) loops as well as topologically trivial
("small") loops. The NWP phenomenon refers to the disorder driven proliferation
of system spanning loops of total negative weight. While previous studies where
focused on the latter loops, we here put under scrutiny the ensemble of small
loops. Our aim is to characterize -using this extensive and exhaustive
numerical study- the loop length distribution of the small loops right at and
below the critical point of the hypercubic setups by means of two independent
critical exponents. These can further be related to the results of previous
finite-size scaling analyses carried out for the system spanning loops. For the
numerical simulations we employed a mapping of the NWP model to a combinatorial
optimization problem that can be solved exactly by using sophisticated matching
algorithms. This allowed us to study here numerically exact very large systems
with high statistics.Comment: 7 pages, 4 figures, 2 tables, paper summary available at
http://www.papercore.org/Kajantie2000. arXiv admin note: substantial text
overlap with arXiv:1003.1591, arXiv:1005.5637, arXiv:1107.174
Evidence for existence of many pure ground states in 3d Spin Glasses
Ground states of 3d EA Ising spin glasses are calculated for sizes up to
using a combination of genetic algorithms and cluster-exact
approximation . The distribution of overlaps is calculated. For
increasing size the width of converges to a nonzero value, indicating
that many pure ground states exist for short range Ising spin glasses.Comment: 4 pages, 3 figures, 2 tables, 16 reference
Reply to the Comment on `Glassy Transition in a Disordered Model for the RNA Secondary Structure'
We reply to the Comment by Hartmann (cond-mat/9908132) on our paper Phys.
Rev. Lett. 84 (2000) 2026 (also cond-mat/9907125).Comment: 1 page, no figures. Accepted for publication in Phys. Rev. Let
Interpolation and harmonic majorants in big Hardy-Orlicz spaces
Free interpolation in Hardy spaces is caracterized by the well-known Carleson
condition. The result extends to Hardy-Orlicz spaces contained in the scale of
classical Hardy spaces , . For the Smirnov and the Nevanlinna
classes, interpolating sequences have been characterized in a recent paper in
terms of the existence of harmonic majorants (quasi-bounded in the case of the
Smirnov class). Since the Smirnov class can be regarded as the union over all
Hardy-Orlicz spaces associated with a so-called strongly convex function, it is
natural to ask how the condition changes from the Carleson condition in
classical Hardy spaces to harmonic majorants in the Smirnov class. The aim of
this paper is to narrow down this gap from the Smirnov class to ``big''
Hardy-Orlicz spaces. More precisely, we characterize interpolating sequences
for a class of Hardy-Orlicz spaces that carry an algebraic structure and that
are strictly bigger than . It turns out that the
interpolating sequences are again characterized by the existence of
quasi-bounded majorants, but now the weights of the majorants have to be in
suitable Orlicz spaces. The existence of harmonic majorants in such Orlicz
spaces will also be discussed in the general situation. We finish the paper
with an example of a separated Blaschke sequence that is interpolating for
certain Hardy-Orlicz spaces without being interpolating for slightly smaller
ones.Comment: 19 pages, 2 figure
A new method for analyzing ground-state landscapes: ballistic search
A ``ballistic-search'' algorithm is presented which allows the identification
of clusters (or funnels) of ground states in Ising spin glasses even for
moderate system sizes. The clusters are defined to be sets of states, which are
connected in state-space by chains of zero-energy flips of spins. The technique
can also be used to estimate the sizes of such clusters. The performance of the
method is tested with respect to different system sizes and choices of
parameters. As an application the ground-state funnel structure of
two-dimensional +or- J spin glasses of systems up to size L=20 is analyzed by
calculating a huge number of ground states per realization. A T=0 entropy per
spin of s_0=0.086(4)k_B is obtained.Comment: 10 pages, 11 figures, 35 references, revte
Negative-weight percolation
We describe a percolation problem on lattices (graphs, networks), with edge
weights drawn from disorder distributions that allow for weights (or distances)
of either sign, i.e. including negative weights. We are interested whether
there are spanning paths or loops of total negative weight. This kind of
percolation problem is fundamentally different from conventional percolation
problems, e.g. it does not exhibit transitivity, hence no simple definition of
clusters, and several spanning paths/loops might coexist in the percolation
regime at the same time. Furthermore, to study this percolation problem
numerically, one has to perform a non-trivial transformation of the original
graph and apply sophisticated matching algorithms.
Using this approach, we study the corresponding percolation transitions on
large square, hexagonal and cubic lattices for two types of disorder
distributions and determine the critical exponents. The results show that
negative-weight percolation is in a different universality class compared to
conventional bond/site percolation. On the other hand, negative-weight
percolation seems to be related to the ferromagnet/spin-glass transition of
random-bond Ising systems, at least in two dimensions.Comment: v1: 4 pages, 4 figures; v2: 10 pages, 7 figures, added results, text
and reference
Overcoming system-size limitations in spin glasses
In order to overcome the limitations of small system sizes in spin-glass
simulations, we investigate the one-dimensional Ising spin chain with power-law
interactions. The model has the advantage over traditional higher-dimensional
Hamiltonians in that a large range of system sizes can be studied. In addition,
the universality class of the model can be changed by tuning the power law
exponent, thus allowing us to scan from the mean-field to long-range and
short-range universality classes. We illustrate the advantages of this model by
studying the nature of the spin glass state where our results hint towards a
replica symmetry breaking scenario. We also compute ground-state energy
distributions and show that mean-field and non-mean-field models are
intrinsically different.Comment: 5 pages, 2x2 figures, proceedings of the 2004 SPDSA Conference in
Hayama, Japan, July 12 - 15, 200
Ground-state clusters of two-, three- and four-dimensional +-J Ising spin glasses
A huge number of independent true ground-state configurations is calculated
for two-, three- and four-dimensional +- J spin-glass models. Using the genetic
cluster-exact approximation method, system sizes up to N=20^2,8^3,6^4 spins are
treated. A ``ballistic-search'' algorithm is applied which allows even for
large system sizes to identify clusters of ground states which are connected by
chains of zero-energy flips of spins. The number of clusters n_C diverges with
N going to infinity. For all dimensions considered here, an exponential
increase of n_C appears to be more likely than a growth with a power of N. The
number of different ground states is found to grow clearly exponentially with
N. A zero-temperature entropy per spin of s_0=0.078(5)k_B (2d), s_0=0.051(3)k_B
(3d) respectively s_0=0.027(5)k_B (4d) is obtained.Comment: large extensions, now 12 pages, 9 figures, 27 reference
- …