27,350 research outputs found

    Comment on `Glassy Transition in a Disordered Model for the RNA Secondary Structure'

    Full text link
    In cond-mat/9907125 the low-temperature behavior of a model for RNA secondary structure was studied. It is claimed that the model exhibits a breaking of the replica symmetry, since the width of the distribution P(q) of overlaps may converge to a finite value at T=0. The authors used an exact enumeration method to obtain all ground states for a given RNA sequence. Because of the exponential growing degeneracy, only sequences up to length L=256 could be studied. Here it is shown that, in contrast to the previous results, by going to much larger sizes as L=2000 the variance coverges towards zero, i.e. P(q) is a delta-function in the thermodynamic limit.Comment: completely rewritten, comment to cond-mat/9907125 (PRL 84, 2026

    Analysis of the loop length distribution for the negative weight percolation problem in dimensions d=2 through 6

    Full text link
    We consider the negative weight percolation (NWP) problem on hypercubic lattice graphs with fully periodic boundary conditions in all relevant dimensions from d=2 to the upper critical dimension d=6. The problem exhibits edge weights drawn from disorder distributions that allow for weights of either sign. We are interested in in the full ensemble of loops with negative weight, i.e. non-trivial (system spanning) loops as well as topologically trivial ("small") loops. The NWP phenomenon refers to the disorder driven proliferation of system spanning loops of total negative weight. While previous studies where focused on the latter loops, we here put under scrutiny the ensemble of small loops. Our aim is to characterize -using this extensive and exhaustive numerical study- the loop length distribution of the small loops right at and below the critical point of the hypercubic setups by means of two independent critical exponents. These can further be related to the results of previous finite-size scaling analyses carried out for the system spanning loops. For the numerical simulations we employed a mapping of the NWP model to a combinatorial optimization problem that can be solved exactly by using sophisticated matching algorithms. This allowed us to study here numerically exact very large systems with high statistics.Comment: 7 pages, 4 figures, 2 tables, paper summary available at http://www.papercore.org/Kajantie2000. arXiv admin note: substantial text overlap with arXiv:1003.1591, arXiv:1005.5637, arXiv:1107.174

    Evidence for existence of many pure ground states in 3d ±J\pm J Spin Glasses

    Full text link
    Ground states of 3d EA Ising spin glasses are calculated for sizes up to 14314^3 using a combination of genetic algorithms and cluster-exact approximation . The distribution P(q)P(|q|) of overlaps is calculated. For increasing size the width of P(q)P(|q|) converges to a nonzero value, indicating that many pure ground states exist for short range Ising spin glasses.Comment: 4 pages, 3 figures, 2 tables, 16 reference

    Interpolation and harmonic majorants in big Hardy-Orlicz spaces

    Full text link
    Free interpolation in Hardy spaces is caracterized by the well-known Carleson condition. The result extends to Hardy-Orlicz spaces contained in the scale of classical Hardy spaces HpH^p, p>0p>0. For the Smirnov and the Nevanlinna classes, interpolating sequences have been characterized in a recent paper in terms of the existence of harmonic majorants (quasi-bounded in the case of the Smirnov class). Since the Smirnov class can be regarded as the union over all Hardy-Orlicz spaces associated with a so-called strongly convex function, it is natural to ask how the condition changes from the Carleson condition in classical Hardy spaces to harmonic majorants in the Smirnov class. The aim of this paper is to narrow down this gap from the Smirnov class to ``big'' Hardy-Orlicz spaces. More precisely, we characterize interpolating sequences for a class of Hardy-Orlicz spaces that carry an algebraic structure and that are strictly bigger than p>0Hp\bigcup_{p>0} H^p. It turns out that the interpolating sequences are again characterized by the existence of quasi-bounded majorants, but now the weights of the majorants have to be in suitable Orlicz spaces. The existence of harmonic majorants in such Orlicz spaces will also be discussed in the general situation. We finish the paper with an example of a separated Blaschke sequence that is interpolating for certain Hardy-Orlicz spaces without being interpolating for slightly smaller ones.Comment: 19 pages, 2 figure

    A new method for analyzing ground-state landscapes: ballistic search

    Full text link
    A ``ballistic-search'' algorithm is presented which allows the identification of clusters (or funnels) of ground states in Ising spin glasses even for moderate system sizes. The clusters are defined to be sets of states, which are connected in state-space by chains of zero-energy flips of spins. The technique can also be used to estimate the sizes of such clusters. The performance of the method is tested with respect to different system sizes and choices of parameters. As an application the ground-state funnel structure of two-dimensional +or- J spin glasses of systems up to size L=20 is analyzed by calculating a huge number of ground states per realization. A T=0 entropy per spin of s_0=0.086(4)k_B is obtained.Comment: 10 pages, 11 figures, 35 references, revte

    Negative-weight percolation

    Full text link
    We describe a percolation problem on lattices (graphs, networks), with edge weights drawn from disorder distributions that allow for weights (or distances) of either sign, i.e. including negative weights. We are interested whether there are spanning paths or loops of total negative weight. This kind of percolation problem is fundamentally different from conventional percolation problems, e.g. it does not exhibit transitivity, hence no simple definition of clusters, and several spanning paths/loops might coexist in the percolation regime at the same time. Furthermore, to study this percolation problem numerically, one has to perform a non-trivial transformation of the original graph and apply sophisticated matching algorithms. Using this approach, we study the corresponding percolation transitions on large square, hexagonal and cubic lattices for two types of disorder distributions and determine the critical exponents. The results show that negative-weight percolation is in a different universality class compared to conventional bond/site percolation. On the other hand, negative-weight percolation seems to be related to the ferromagnet/spin-glass transition of random-bond Ising systems, at least in two dimensions.Comment: v1: 4 pages, 4 figures; v2: 10 pages, 7 figures, added results, text and reference

    Overcoming system-size limitations in spin glasses

    Full text link
    In order to overcome the limitations of small system sizes in spin-glass simulations, we investigate the one-dimensional Ising spin chain with power-law interactions. The model has the advantage over traditional higher-dimensional Hamiltonians in that a large range of system sizes can be studied. In addition, the universality class of the model can be changed by tuning the power law exponent, thus allowing us to scan from the mean-field to long-range and short-range universality classes. We illustrate the advantages of this model by studying the nature of the spin glass state where our results hint towards a replica symmetry breaking scenario. We also compute ground-state energy distributions and show that mean-field and non-mean-field models are intrinsically different.Comment: 5 pages, 2x2 figures, proceedings of the 2004 SPDSA Conference in Hayama, Japan, July 12 - 15, 200

    Ground-state clusters of two-, three- and four-dimensional +-J Ising spin glasses

    Full text link
    A huge number of independent true ground-state configurations is calculated for two-, three- and four-dimensional +- J spin-glass models. Using the genetic cluster-exact approximation method, system sizes up to N=20^2,8^3,6^4 spins are treated. A ``ballistic-search'' algorithm is applied which allows even for large system sizes to identify clusters of ground states which are connected by chains of zero-energy flips of spins. The number of clusters n_C diverges with N going to infinity. For all dimensions considered here, an exponential increase of n_C appears to be more likely than a growth with a power of N. The number of different ground states is found to grow clearly exponentially with N. A zero-temperature entropy per spin of s_0=0.078(5)k_B (2d), s_0=0.051(3)k_B (3d) respectively s_0=0.027(5)k_B (4d) is obtained.Comment: large extensions, now 12 pages, 9 figures, 27 reference
    corecore