35 research outputs found

    Relative contractile motion of the rings in a switchable palindromic [3]rotaxane in aqueous solution driven by radical-pairing interactions

    Get PDF
    Artificial muscles are an essential component for the development of next-generation prosthetic devices, minimally invasive surgical tools, and robotics. This communication describes the design, synthesis, and characterisation of a mechanically interlocked molecule (MIM), capable of switchable and reversible linear molecular motion in aqueous solution that mimics muscular contraction and extension. Compatibility with aqueous solution was achieved in the doubly bistable palindromic [3]rotaxane design by using radical-based molecular recognition as the driving force to induce switching.National Institute of General Medical Sciences (U.S.) (Award F32GM105403)American Society for Engineering Education. National Defense Science and Engineering Graduate Fellowshi

    Intramolecular Energy and Electron Transfer Within a Diazaperopyrenium-Based Cyclophane

    Get PDF
    Molecules capable of performing highly efficient energy transfer and ultrafast photo-induced electron transfer in well-defined multichromophoric structures are indispensable to the development of artificial photosynthetic systems. Herein, we report on the synthesis, characterization and photophysical properties of a rationally designed multichromophoric tetracationic cyclophane, DAPPBox^(4+), containing a diazaperopyrenium (DAPP^(2+)) unit and an extended viologen (ExBIPY^(2+)) unit, which are linked together by two p-xylylene bridges. Both ^1H NMR spectroscopy and single crystal X-ray diffraction analysis confirm the formation of an asymmetric, rigid, box-like cyclophane, DAPPBox^(4+). The solid-state superstructure of this cyclophane reveals a herringbone-type packing motif, leading to two types of π···π interactions: (i) between the ExBIPY^(2+) unit and the DAPP^(2+) unit (π···π distance of 3.7 Å) in the adjacent parallel cyclophane, as well as (ii) between the ExBIPY^(2+) unit (π···π distance of 3.2 Å) and phenylene ring in the closest orthogonal cyclophane. Moreover, the solution-phase photophysical properties of this cyclophane have been investigated by both steady-state and time-resolved absorption and emission spectroscopies. Upon photoexcitation of DAPPBox^(4+) at 330 nm, rapid and quantitative intramolecular energy transfer occurs from the ^1*ExBIPY^(2+) unit to the DAPP^(2+) unit in 0.5 ps to yield ^1*DAPP^(2+). The same excitation wavelength simultaneously populates a higher excited state of ^1*DAPP^(2+) which then undergoes ultrafast intramolecular electron transfer from ^1*DAPP^(2+) to ExBIPY^(2+) to yield the DAPP^(3+•) – ExBIPY^(+•) radical ion pair in τ = 1.5 ps. Selective excitation of DAPP^(2+) at 505 nm populates a lower excited state where electron transfer is kinetically unfavorable

    Quantum Mechanical and Experimental Validation that Cyclobis(paraquat-p-phenylene) Forms a 1:1 Inclusion Complex with Tetrathiafulvalene

    Get PDF
    The promiscuous encapsulation of π-electron-rich guests by the π-electron-deficient host, cyclobis(paraquat-p-phenylene) (CBPQT^(4+)), involves the formation of 1:1 inclusion complexes. One of the most intensely investigated charge-transfer (CT) bands, assumed to result from inclusion of a guest molecule inside the cavity of CBPQT^(4+), is an emerald-green band associated with the complexation of tetrathiafulvalene (TTF) and its derivatives. This interpretation was called into question recently in this journal based on theoretical gas-phase calculations that reinterpreted this CT band in terms of an intermolecular side-on interaction of TTF with one of the bipyridinium (BIPY^(2+)) units of CBPQT^(4+), rather than the encapsulation of TTF inside the cavity of CBPQT^(4+). We carried out DFT calculations, including solvation, that reveal conclusively that the CT band emerging upon mixing TTF with CBPQT^(4+) arises from the formation of a 1:1 inclusion complex. In support of this conclusion, we have performed additional experiments on a [2]rotaxane in which a TTF unit, located in the middle of its short dumbbell, is prevented sterically from interacting with either one of the two BIPY^(2+) units of a CBPQT^(4+) ring residing on a separate [2]rotaxane in a side-on fashion. This [2]rotaxane has similar UV/Vis and ^1H NMR spectroscopic properties with those of 1:1 inclusion complexes of TTF and its derivatives with CBPQT^(4+). The [2]rotaxane exists as an equimolar mixture of cis- and trans-isomers associated with the disubstituted TTF unit in its dumbbell component. Solid-state structures were obtained for both isomers, validating the conclusion that the TTF unit, which gives rise to the CT band, resides inside CBPQT^(4+)

    A Radically Configurable Six-State Compound

    Get PDF
    Most organic radicals possess short lifetimes and quickly undergo dimerization or oxidation. Here, we report on the synthesis by radical templation of a class of air- and water-stable organic radicals, trapped within a homo[2]catenane composed of two rigid and fixed cyclobis (paraquat-p-phenylene) rings. The highly energetic octacationic homo[2]catenane, which is capable of accepting up to eight electrons, can be configured reversibly, both chemically and electrochemically, between each one of six experimentally accessible redox states (0, 2+, 4+, 6+, 7+, and 8+) from within the total of nine states evaluated by quantum mechanical methods. All six of the observable redox states have been identified by electrochemical techniques, three (4+, 6+, and 7+) have been characterized by x-ray crystallography, four (4+, 6+, 7+, and 8+) by electron paramagnetic resonance spectroscopy, one (7+) by superconducting quantum interference device magnetometry, and one (8+) by nuclear magnetic resonance spectroscopy

    Redox switchable daisy chain rotaxanes driven by radical-radical interactions

    No full text
    We report the one-pot synthesis and electrochemical switching mechanism of a family of electrochemically bistable 'daisy chain' rotaxane switches based on a derivative of the so-called 'blue box' (BB4+) tetracationic cyclophane cyclobis(paraquat-p-phenylene). These mechanically interlocked molecules are prepared by stoppering kinetically the solution-state assemblies of a self-complementary monomer comprising a BB4+ ring appended with viologen (V2+) and 1,5-dioxynaphthalene (DNP) recognition units using click chemistry. Six daisy chains are isolated from a single reaction: two monomers (which are not formally 'chains'), two dimers, and two trimers, each pair of which contains a cyclic and an acyclic isomer. The products have been characterized in detail by high-field H-1 NMR spectroscopy in CD3CN-made possible in large part by the high symmetry of the novel BB4+ functionality and the energies associated with certain aspects of their dynamics in solution are quantified. Cyclic voltammetry and spectroelectrochemistry have been used to elucidate the electrochemical switching mechanism of the major cyclic daisy chain products, which relies on spin-pairing interactions between V center dot+ and BB2(center dot+) radical cations under reductive conditions. These daisy chains are of particular interest as electrochemically addressable molecular switches because, in contrast with more conventional bistable catenanes and rotaxanes, the mechanical movement of the ring between recognition units is accompanied by significant changes in molecular dimensions. Whereas the self-complexed cyclic monomer known as a [cl]daisy chain or molecular 'ouroboros'-conveys sphincter-like constriction and dilation of its ultramacrocyclic cavity, the cyclic dimer ([c2]daisy chain) expresses muscle-like contraction and expansion along its molecular length

    Self-assembly of a [2]Pseudorota[3]catenane in water

    No full text
    A donor–acceptor [3]catenane incorporating two cyclobis(paraquat-p-phenylene) rings linked together by a dinaphtho[50]crown-14 macrocycle possesses a π-electron-deficient pocket. Contrary to expectation, negligible binding of a hexaethylene glycol chain interrupted in its midriff by a π-electron-rich 1,5-dioxynaphthalene unit was observed in acetonitrile. However, a fortuitous solid-state superstructure of the expected 1:1 complex revealed its inability to embrace any stabilizing [C–H···O] interactions between the clearly unwelcome guest and the host reluctantly accommodating it. By contrast, in aqueous solution, the 1:1 complex becomes very stable thanks to the intervention of hydrophobic bonding

    The state of financial reporting A review

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:99/36389 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Mechanically induced intramolecular electron transfer in a mixed-valence molecular shuttle

    No full text
    The kinetics and thermodynamics of intramolecular electron transfer (IET) can be subjected to redox control in a bistable [2] rotaxane comprised of a dumbbell component containing an electron-rich 1,5-dioxynaphthalene (DNP) unit and an electron-poor phenylene-bridged bipyridinium (P-BIPY2+) unit and a cyclobis (paraquat-p-phenylene) (CBPQT(4+)) ring component. The [2] rotaxane exists in the ground-state co-conformation (GSCC) wherein the CBPQT(4+) ring encircles the DNP unit. Reduction of the CBPQT(4+) leads to the CBPQT(2(center dot+)) diradical dication while the P-BIPY2+ unit is reduced to its P-BIPY center dot+ radical cation. A radical-state co-conformation (RSCC) results from movement of the CBPQT(2(center dot+)) ring along the dumbbell to surround the P-BIPY center dot+ unit. This shuttling event induces IET to occur between the pyridinium redox centers of the P-BIPY center dot+ unit, a property which is absent between these redox centers in the free dumbbell and in the 1:1 complex formed between the CBPQT(2(center dot+)) ring and the radical cation of methyl-phenylene-viologen (MPV center dot+). Using electron paramagnetic resonance (EPR) spectroscopy, the process of IET was investigated by monitoring the line broadening at varying temperatures and determining the rate constant (k(ET) 1.33 x 10(7) s(-1)) and activation energy (Delta G double dagger = 1.01 kcal mol(-1)) for electron transfer. These values were compared to the corresponding values predicted, using the optical absorption spectra and Marcus-Hush theory.The kinetics and thermodynamics of intramolecular electron transfer (IET) can be subjected to redox control in a bistable [2] rotaxane comprised of a dumbbell component containing an electron-rich 1,5-dioxynaphthalene (DNP) unit and an electron-poor phenylene-bridged bipyridinium (P-BIPY2+) unit and a cyclobis (paraquat-p-phenylene) (CBPQT(4+)) ring component. The [2] rotaxane exists in the ground-state co-conformation (GSCC) wherein the CBPQT(4+) ring encircles the DNP unit. Reduction of the CBPQT(4+) leads to the CBPQT(2(center dot+)) diradical dication while the P-BIPY2+ unit is reduced to its P-BIPY center dot+ radical cation. A radical-state co-conformation (RSCC) results from movement of the CBPQT(2(center dot+)) ring along the dumbbell to surround the P-BIPY center dot+ unit. This shuttling event induces IET to occur between the pyridinium redox centers of the P-BIPY center dot+ unit, a property which is absent between these redox centers in the free dumbbell and in the 1:1 complex formed between the CBPQT(2(center dot+)) ring and the radical cation of methyl-phenylene-viologen (MPV center dot+). Using electron paramagnetic resonance (EPR) spectroscopy, the process of IET was investigated by monitoring the line broadening at varying temperatures and determining the rate constant (k(ET) 1.33 x 10(7) s(-1)) and activation energy (Delta G double dagger = 1.01 kcal mol(-1)) for electron transfer. These values were compared to the corresponding values predicted, using the optical absorption spectra and Marcus-Hush theory
    corecore