8,123 research outputs found
Hybrid Focal Stereo Networks for Pattern Analysis in Homogeneous Scenes
In this paper we address the problem of multiple camera calibration in the
presence of a homogeneous scene, and without the possibility of employing
calibration object based methods. The proposed solution exploits salient
features present in a larger field of view, but instead of employing active
vision we replace the cameras with stereo rigs featuring a long focal analysis
camera, as well as a short focal registration camera. Thus, we are able to
propose an accurate solution which does not require intrinsic variation models
as in the case of zooming cameras. Moreover, the availability of the two views
simultaneously in each rig allows for pose re-estimation between rigs as often
as necessary. The algorithm has been successfully validated in an indoor
setting, as well as on a difficult scene featuring a highly dense pilgrim crowd
in Makkah.Comment: 13 pages, 6 figures, submitted to Machine Vision and Application
Self-Calibration of Cameras with Euclidean Image Plane in Case of Two Views and Known Relative Rotation Angle
The internal calibration of a pinhole camera is given by five parameters that
are combined into an upper-triangular calibration matrix. If the
skew parameter is zero and the aspect ratio is equal to one, then the camera is
said to have Euclidean image plane. In this paper, we propose a non-iterative
self-calibration algorithm for a camera with Euclidean image plane in case the
remaining three internal parameters --- the focal length and the principal
point coordinates --- are fixed but unknown. The algorithm requires a set of point correspondences in two views and also the measured relative
rotation angle between the views. We show that the problem generically has six
solutions (including complex ones).
The algorithm has been implemented and tested both on synthetic data and on
publicly available real dataset. The experiments demonstrate that the method is
correct, numerically stable and robust.Comment: 13 pages, 7 eps-figure
Oak forest carbon and water simulations:Model intercomparisons and evaluations against independent data
Models represent our primary method for integration of small-scale, process-level phenomena into a comprehensive description of forest-stand or ecosystem function. They also represent a key method for testing hypotheses about the response of forest ecosystems to multiple changing environmental conditions. This paper describes the evaluation of 13 stand-level models varying in their spatial, mechanistic, and temporal complexity for their ability to capture intra- and interannual components of the water and carbon cycle for an upland, oak-dominated forest of eastern Tennessee. Comparisons between model simulations and observations were conducted for hourly, daily, and annual time steps. Data for the comparisons were obtained from a wide range of methods including: eddy covariance, sapflow, chamber-based soil respiration, biometric estimates of stand-level net primary production and growth, and soil water content by time or frequency domain reflectometry. Response surfaces of carbon and water flux as a function of environmental drivers, and a variety of goodness-of-fit statistics (bias, absolute bias, and model efficiency) were used to judge model performance.
A single model did not consistently perform the best at all time steps or for all variables considered. Intermodel comparisons showed good agreement for water cycle fluxes, but considerable disagreement among models for predicted carbon fluxes. The mean of all model outputs, however, was nearly always the best fit to the observations. Not surprisingly, models missing key forest components or processes, such as roots or modeled soil water content, were unable to provide accurate predictions of ecosystem responses to short-term drought phenomenon. Nevertheless, an inability to correctly capture short-term physiological processes under drought was not necessarily an indicator of poor annual water and carbon budget simulations. This is possible because droughts in the subject ecosystem were of short duration and therefore had a small cumulative impact. Models using hourly time steps and detailed mechanistic processes, and having a realistic spatial representation of the forest ecosystem provided the best predictions of observed data. Predictive ability of all models deteriorated under drought conditions, suggesting that further work is needed to evaluate and improve ecosystem model performance under unusual conditions, such as drought, that are a common focus of environmental change discussions
On Parametrically Excited Flexural Motion of an Extensible and Shearable Rod with a Heavy Attachment
A simple Cosserat model is used to explore the coupled planar flemural and arial vibrations of a slender rod clamped at one end with a heauy attached mass free to move at the other. By assuming that the inertia of the rod is small compared to that of the attached mass it is shown how the equations of motionreduce to a dynamical system. The effects of grauity on the rod can be incorporated within this frame-work and the linearised stability of the system discussed in terms of solutions to the Mathieu-Hill equation
The Indian family on UK reality television: Convivial culture in salient contexts
This is the author's accepted manuscript. The final published article is available from the link below, copyright 2012 @ the author.This article demonstrates how The Family (2009), a fly-on-the wall UK reality series about a British Indian family, facilitates both current public service broadcasting requirements and mass audience appeal. From a critical cultural studies perspective, the author examines the journalistic and viewer responses to the series where authenticity, universality, and comedy emerge as major themes. Textual analysis of the racialized screen representations also helps locate the series within the contexts of contested multiculturalism, genre developments in reality television and public service broadcasting. Paul Gilroyâs concept of convivial culture is used as a frame in understanding how meanings of the series are produced within a South Asian popular representational space. The author suggests that the social comedy taxonomy is a prerequisite for the making of this particular observational documentary. Further, the popular (comedic) mode of conviviality on which the series depends is both expedient and necessary within the various sociopolitical contexts outlined
Recommended from our members
Operations other than war: Requirements for analysis tools research report
This report documents the research effort to determine the requirements for new or improved analysis tools to support decisions at the strategic and operational levels for military Operations Other than War (OOTW). The work was performed for the Commander in Chief, U.S. Pacific Command (USCINCPAC). The data collection was based on workshops attended by experts in OOTWs: analysis personnel from each of the Combatant Commands, the Services, the Office of the Secretary of Defense (OSD), the Joint Staff, and other knowledgeable personnel. Further data were gathered from other workshops and conferences and from the literature. The results of this research begin with the creation of a taxonomy of OOTWs: categories of operations, attributes of operations, and tasks requiring analytical support. The tasks are connected to the Joint Staff`s Universal Joint Task List (UJTL). Historical OOTWs are analyzed to produce frequency distributions by category and responsible CINC. The analysis products are synthesized into a list of requirements for analytical tools and definitions of the requirements. The report concludes with a timeline or roadmap for satisfying the requirements
Distributed leadership, trust and online communities
This paper analyses the role of distributed leadership and trust in online communities. The team-based informal ethos of online collaboration requires a different kind of leadership from that in formal positional hierarchies. Such leadership may be more flexible and sophisticated, capable of encompassing ambiguity and rapid change. Online leaders need to be partially invisible, delegating power and distributing tasks. Yet, simultaneously, online communities are facilitated by the high visibility and subtle control of expert leaders. This paradox: that leaders need to be both highly visible and invisible as appropriate, was derived from prior research and tested in the analysis of online community discussions using a pattern-matching process. It is argued that both leader visibility and invisibility are important for the facilitation of trusting collaboration via distributed leadership. Advanced leadership responses to complex situations in online communities foster positive group interaction and decision-making, facilitated through active distribution of specific tasks
Finite-Dimensional Bicomplex Hilbert Spaces
This paper is a detailed study of finite-dimensional modules defined on
bicomplex numbers. A number of results are proved on bicomplex square matrices,
linear operators, orthogonal bases, self-adjoint operators and Hilbert spaces,
including the spectral decomposition theorem. Applications to concepts relevant
to quantum mechanics, like the evolution operator, are pointed out.Comment: 21 page
Rectification from Radially-Distorted Scales
This paper introduces the first minimal solvers that jointly estimate lens
distortion and affine rectification from repetitions of rigidly transformed
coplanar local features. The proposed solvers incorporate lens distortion into
the camera model and extend accurate rectification to wide-angle images that
contain nearly any type of coplanar repeated content. We demonstrate a
principled approach to generating stable minimal solvers by the Grobner basis
method, which is accomplished by sampling feasible monomial bases to maximize
numerical stability. Synthetic and real-image experiments confirm that the
solvers give accurate rectifications from noisy measurements when used in a
RANSAC-based estimator. The proposed solvers demonstrate superior robustness to
noise compared to the state-of-the-art. The solvers work on scenes without
straight lines and, in general, relax the strong assumptions on scene content
made by the state-of-the-art. Accurate rectifications on imagery that was taken
with narrow focal length to near fish-eye lenses demonstrate the wide
applicability of the proposed method. The method is fully automated, and the
code is publicly available at https://github.com/prittjam/repeats.Comment: pre-prin
Autocalibration with the Minimum Number of Cameras with Known Pixel Shape
In 3D reconstruction, the recovery of the calibration parameters of the
cameras is paramount since it provides metric information about the observed
scene, e.g., measures of angles and ratios of distances. Autocalibration
enables the estimation of the camera parameters without using a calibration
device, but by enforcing simple constraints on the camera parameters. In the
absence of information about the internal camera parameters such as the focal
length and the principal point, the knowledge of the camera pixel shape is
usually the only available constraint. Given a projective reconstruction of a
rigid scene, we address the problem of the autocalibration of a minimal set of
cameras with known pixel shape and otherwise arbitrarily varying intrinsic and
extrinsic parameters. We propose an algorithm that only requires 5 cameras (the
theoretical minimum), thus halving the number of cameras required by previous
algorithms based on the same constraint. To this purpose, we introduce as our
basic geometric tool the six-line conic variety (SLCV), consisting in the set
of planes intersecting six given lines of 3D space in points of a conic. We
show that the set of solutions of the Euclidean upgrading problem for three
cameras with known pixel shape can be parameterized in a computationally
efficient way. This parameterization is then used to solve autocalibration from
five or more cameras, reducing the three-dimensional search space to a
two-dimensional one. We provide experiments with real images showing the good
performance of the technique.Comment: 19 pages, 14 figures, 7 tables, J. Math. Imaging Vi
- âŠ