15 research outputs found

    River Basin Surveys Papers, No. 28: The Dance Hall of the Santee Bottoms on the Fort Berthold Reservation, Garrison Reservoir, North Dakota

    Get PDF
    Published as a series sponsored by the Smithsonian Institution Bureau of American Ethnology, the “River Basin Surveys Papers” are a collection of archeological investigations focused on areas now flooded by the completion of various dam projects in the United States. The River Basin Surveys Papers (numbered 1-39) were mostly published in bundles with 5-6 papers in each bundle. In collaboration with the United States (US) National Park Service and the US Bureau of Reclamation, the US Department of the Interior, and the US Army Corps of Engineers, the Smithsonian Institution pulled archeological and paleontological remains from several sites prior to losing access to the sites due to flooding. The Smithsonian Institution calls this project the Inter-Agency Archeological Salvage Program. Paper number 28 describes the Dance Hall of Santee Bottoms, which was a standing structure at the time of investigation (1953). The author describes the hall as “in good condition” and reports that it was likely last used in 1946. The hall was built by a group of Mandan, Hidatsa, and Arikara led by Old Dog of Elbowoods who fractured from a local group and formed the “Santee Dancing Society.” This is a relatively short paper focused on the history and description of the dance hall. This paper includes photographs and illustrations.https://commons.und.edu/indigenous-gov-docs/1041/thumbnail.jp

    Relativistic quantum measurement

    Get PDF
    Does the measurement of a quantum system necessarily break Lorentz invariance? We present a simple model of a detector that measures the spacetime localization of a relativistic particle in a Lorentz invariant manner. The detector does not select a preferred Lorentz frame as a Newton-Wigner measurement would do. The result indicates that there exists a Lorentz invariant notion of quantum measurement and sheds light on the issue of the localization of a relativistic particle. The framework considered is that of single-particle mechanics as opposed to field theory. The result may be taken as support for the interpretation postulate of the spacetime-states formulation of single-particle quantum theory.Comment: 9 pages, no figures: Revision: references adde

    A global picture of quantum de Sitter space

    Full text link
    Perturbative gravity about a de Sitter background motivates a global picture of quantum dynamics in `eternal de Sitter space,' the theory of states which are asymptotically de Sitter to both future and past. Eternal de Sitter physics is described by a finite dimensional Hilbert space in which each state is precisely invariant under the full de Sitter group. This resolves a previously-noted tension between de Sitter symmetry and finite entropy. Observables, implications for Boltzmann brains, and Poincare recurrences are briefly discussed.Comment: 17 pages, 1 figure. v2: minor changes, references added. v3: minor changes to correspond to PRD versio

    Comparing Formulations of Generalized Quantum Mechanics for Reparametrization-Invariant Systems

    Full text link
    A class of decoherence schemes is described for implementing the principles of generalized quantum theory in reparametrization-invariant `hyperbolic' models such as minisuperspace quantum cosmology. The connection with sum-over-histories constructions is exhibited and the physical equivalence or inequivalence of different such schemes is analyzed. The discussion focuses on comparing constructions based on the Klein-Gordon product with those based on the induced (a.k.a. Rieffel, Refined Algebraic, Group Averaging, or Spectral Analysis) inner product. It is shown that the Klein-Gordon and induced products can be simply related for the models of interest. This fact is then used to establish isomorphisms between certain decoherence schemes based on these products.Comment: 21 pages ReVTe

    The Generalized Hartle-Hawking Initial State: Quantum Field Theory on Einstein Conifolds

    Get PDF
    Recent arguments have indicated that the sum over histories formulation of quantum amplitudes for gravity should include sums over conifolds, a set of histories with more general topology than that of manifolds. This paper addresses the consequences of conifold histories in gravitational functional integrals that also include scalar fields. This study will be carried out explicitly for the generalized Hartle-Hawking initial state, that is the Hartle-Hawking initial state generalized to a sum over conifolds. In the perturbative limit of the semiclassical approximation to the generalized Hartle-Hawking state, one finds that quantum field theory on Einstein conifolds is recovered. In particular, the quantum field theory of a scalar field on de Sitter spacetime with RP3RP^3 spatial topology is derived from the generalized Hartle-Hawking initial state in this approximation. This derivation is carried out for a scalar field of arbitrary mass and scalar curvature coupling. Additionally, the generalized Hartle-Hawking boundary condition produces a state that is not identical to but corresponds to the Bunch-Davies vacuum on RP3RP^3 de Sitter spacetime. This result cannot be obtained from the original Hartle-Hawking state formulated as a sum over manifolds as there is no Einstein manifold with round RP3RP^3 boundary.Comment: Revtex 3, 31 pages, 4 epsf figure

    Almost Ideal Clocks in Quantum Cosmology: A Brief Derivation of Time

    Get PDF
    A formalism for quantizing time reparametrization invariant dynamics is considered and applied to systems which contain an `almost ideal clock.' Previously, this formalism was successfully applied to the Bianchi models and, while it contains no fundamental notion of `time' or `evolution,' the approach does contain a notion of correlations. Using correlations with the almost ideal clock to introduce a notion of time, the work below derives the complete formalism of external time quantum mechanics. The limit of an ideal clock is found to be closely associated with the Klein-Gordon inner product and the Newton-Wigner formalism and, in addition, this limit is shown to fail for a clock that measures metric-defined proper time near a singularity in Bianchi models.Comment: 16 pages ReVTeX (35 preprint pages

    Inextendible Schwarzschild black hole with a single exterior: How thermal is the Hawking radiation?

    Full text link
    Several approaches to Hawking radiation on Schwarzschild spacetime rely in some way or another on the fact that the Kruskal manifold has two causally disconnected exterior regions. We investigate the Hawking(-Unruh) effect for a real scalar field on the \RPthree geon: an inextendible, globally hyperbolic, space and time orientable eternal black hole spacetime that is locally isometric to Kruskal but contains only one exterior region. The Hartle-Hawking-like vacuum~\hhvacgeon, which can be characterized alternatively by the positive frequency properties along the horizons or by the complex analytic properties of the Feynman propagator, turns out to contain exterior region Boulware modes in correlated pairs, and any operator in the exterior that only couples to one member of each correlated Boulware pair has thermal expectation values in the usual Hawking temperature. Generic operators in the exterior do not have this special form; however, we use a Bogoliubov transformation, a particle detector analysis, and a particle emission-absorption analysis that invokes the analytic properties of the Feynman propagator, to argue that \hhvacgeon appears as a thermal bath with the standard Hawking temperature to any exterior observer at asymptotically early and late Schwarzschild times. A~(naive) saddle-point estimate for the path-integral-approach partition function yields for the geon only half of the Bekenstein-Hawking entropy of a Schwarzschild black hole with the same ADM mass: possible implications of this result for the validity of path-integral methods or for the statistical interpretation of black-hole entropy are discussed. Analogous results hold for a Rindler observer in a flat spacetime whose global properties mimic those of the geon.Comment: 53 pages, REVTex v3.1 with amsfonts and epsf, includes 5 eps figures. (v2: Title and abstract expanded, minor comments added. v3: Minor typos corrected.

    Decoherence, einselection, and the quantum origins of the classical

    Full text link
    Decoherence is caused by the interaction with the environment. Environment monitors certain observables of the system, destroying interference between the pointer states corresponding to their eigenvalues. This leads to environment-induced superselection or einselection, a quantum process associated with selective loss of information. Einselected pointer states are stable. They can retain correlations with the rest of the Universe in spite of the environment. Einselection enforces classicality by imposing an effective ban on the vast majority of the Hilbert space, eliminating especially the flagrantly non-local "Schr\"odinger cat" states. Classical structure of phase space emerges from the quantum Hilbert space in the appropriate macroscopic limit: Combination of einselection with dynamics leads to the idealizations of a point and of a classical trajectory. In measurements, einselection replaces quantum entanglement between the apparatus and the measured system with the classical correlation.Comment: Final version of the review, with brutally compressed figures. Apart from the changes introduced in the editorial process the text is identical with that in the Rev. Mod. Phys. July issue. Also available from http://www.vjquantuminfo.or

    Re-visiting Meltsner: Policy Advice Systems and the Multi-Dimensional Nature of Professional Policy Analysis

    Get PDF
    10.2139/ssrn.15462511-2
    corecore