24 research outputs found

    The importance of specifically adsorbed ions for electrokinetic phenomena: Bridging the gap between experiments and MD simulations

    No full text
    Molecular Dynamics (MD) simulations are uniquely suitable for providing molecular-level insights into the Electric Double Layer (EDL) that forms when a charged surface is in contact with an aqueous solution. However, simulations are only as accurate in predicting EDL properties as permitted by the atomic interaction models. Experimental ζ-potential values and surface charges could provide a potentially suitable reference to validate and tune the interaction models, if not for the fact that they themselves are a product of imperfect models used to interpret the raw measurement data. Here, we present an approach to tune an interaction model by comparing Electro-Osmotic Flow (EOF) MD simulations against experimental Streaming Current (SC) measurements while minimizing potential modeling errors arising from both approaches. The point that is least susceptible to interpretation and modeling errors is argued to be at the concentration for which zero flow velocity is observed in EOF simulations and a net zero electric current is measured in SC experiments. At this concentration, the ζ-potential is also zero. We were able to match the experimental concentration at which ζ = 0 in MD simulations for a CaCl2 solution at pH 7.5 in contact with fused silica by tuning the ion-surface Lennard-Jones cross interactions. These interactions were found to greatly affect the ion distribution within the EDL and particularly the formation of inner-sphere surface-complexes, which, in turn, affects the electrokinetic flow. With the ion distribution determined explicitly, a series of properties can be calculated unambiguously, such as the capacitance needed for surface complexation models.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Complex Fluid Processin

    Size-modified Poisson–Nernst–Planck approach for modeling a local electrode environment in CO2 electrolysis†

    No full text
    Electrochemical reduction of CO2 heavily depends on the reaction conditions found near the electrode surface. These local conditions are affected by phenomena such as electric double layer formation and steric effects of the solution species, which in turn impact the passage of CO2 molecules to the catalytic surface. Most models for CO2 reduction ignore these effects, leading to an incomplete understanding of the local electrode environment. In this work, we present a modeling approach consisting of a set of size-modified Poisson–Nernst–Planck equations and the Frumkin interpretation of Tafel kinetics. We introduce a modification to the steric effects inside the transport equations which results in more realistic concentration profiles. We also show how the modification lends the model numerical stability without adopting any separate stabilization technique. The model can replicate experimental current densities and faradaic efficiencies till −1.5 vs. SHE/V of applied electrode potential. We also show the utility of this approach for systems operating at elevated CO2 pressures. Using Frumkin-corrected kinetics gels well with the theoretical understanding of the double layer. Hence, this work provides a sound mechanistic understanding of the CO2 reduction process, from which new insights on key performance controlling parameters can be obtained.Complex Fluid Processin

    On the transferability of ion parameters to the TIP4P/2005 water model using molecular dynamics simulations

    No full text
    Countless molecular dynamics studies have relied on available ion and water force field parameters to model aqueous electrolyte solutions. The TIP4P/2005 model has proven itself to be among the best rigid water force fields, whereas many of the most successful ion parameters were optimized in combination with SPC/E, TIP3P, or TIP4P/Ew water. Many researchers have combined these ions with TIP4P/2005, hoping to leverage the strengths of both parameter sets. To assess if this widely used approach is justified and to provide a guide in selecting ion parameters, we investigated the transferability of various commonly used monovalent and multivalent ion parameters to the TIP4P/2005 water model. The transferability is evaluated in terms of ion hydration free energy, hydration radius, coordination number, and self-diffusion coefficient at infinite dilution. For selected ion parameters, we also investigated density, ion pairing, chemical potential, and mean ionic activity coefficients at finite concentrations. We found that not all ions are equally transferable to TIP4P/2005 without compromising their performance. In particular, ions optimized for TIP3P water were found to be poorly transferable to TIP4P/2005, whereas ions optimized for TIP4P/Ew water provided nearly perfect transferability. The latter ions also showed good overall agreement with experimental values. The one exception is that no combination of ion parameters and water model considered here was found to accurately reproduce experimental self-diffusion coefficients. Additionally, we found that cations optimized for SPC/E and TIP3P water displayed consistent underpredictions in the hydration free energy, whereas anions consistently overpredicted the hydration free energy.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Complex Fluid ProcessingEngineering Thermodynamic

    Inclusion Complexation of Organic Micropollutants with β-Cyclodextrin

    No full text
    Recently, β-cyclodextrin (βCD)-based polymers with enhanced adsorption kinetics and high removal capacity of organic micropollutants (OMPs) and uptake rates have been synthesized and tested experimentally. Although the exact physical-chemical mechanisms via which these polymers capture the various types of OMPs are not yet fully understood, it is suggested that the inclusion complex formation of OMPs with βCD is very important. In this study, the inclusion complex formation of OMPs with βCD in an aqueous solution is investigated by using the well-established attach-pull-release method in force field-based molecular dynamics simulations. A representative set of OMPs is selected based on the measured occurrences in surface and ground waters and the directives published by the European Union. To characterize the formation of the inclusion complex, the binding free energies, enthalpies, and entropies are computed and compared to experimental values. It is shown that computations using the q4md-CD/GAFF/Bind3P force field combination yield binding free energies that are in reasonable agreement with the experimental results for all OMPs studied. The binding enthalpies are decomposed into the main contributing interaction types. It is shown that, for all studied OMPs, the van der Waals interactions are favorable for the inclusion complexion and the hydrogen bond formation of the guest with the solvent and βCD plays a crucial role in the binding mechanism. Our findings show that MD simulations can adequately describe the inclusion complex formation of βCD with OMPs, which is the first step toward understanding the underlying mechanisms via which the βCD-based polymers capture OMPs.Engineering ThermodynamicsComplex Fluid Processin

    Coupling mesoscale transport to catalytic surface reactions in a hybrid model

    No full text
    In heterogeneous catalysis, reactivity and selectivity are not only influenced by chemical processes occurring on catalytic surfaces but also by physical transport phenomena in the bulk fluid and fluid near the reactive surfaces. Because these processes take place at a large range of time and length scales, it is a challenge to model catalytic reactors, especially when dealing with complex surface reactions that cannot be reduced to simple mean-field boundary conditions. As a particle-based mesoscale method, Stochastic Rotation Dynamics (SRD) is well suited for studying problems that include both microscale effects on surfaces and transport phenomena in fluids. In this work, we demonstrate how to simulate heterogeneous catalytic reactors by coupling an SRD fluid with a catalytic surface on which complex surface reactions are explicitly modeled. We provide a theoretical background for modeling different stages of heterogeneous surface reactions. After validating the simulation method for surface reactions with mean-field assumptions, we apply the method to non-mean-field reactions in which surface species interact with each other through a Monte Carlo scheme, leading to island formation on the catalytic surface. We show the potential of the method by simulating a more complex three-step reaction mechanism with reactant dissociation. Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Complex Fluid ProcessingEngineering Thermodynamic

    The role of water models on the prediction of slip length of water in graphene nanochannels

    No full text
    Slip lengths reported from molecular dynamics (MD) simulations of water flow in graphene nanochannels show significant scatter in the literature. These discrepancies are in part due to the used water models. We demonstrate self-consistent comparisons of slip characteristics between the SPC, SPC/E, SPC/Fw, TIP3P, TIP4P, and TIP4P/2005 water models. The slip lengths are inferred using an analytical model that employs the shear viscosity of water and channel average velocities obtained from nonequilibrium MD simulations. First, viscosities for each water model are quantified using MD simulations of counterflowing, force-driven flows in periodic domains in the absence of physical walls. While the TIP4P/2005 model predicts water viscosity at the specified thermodynamic state with 1.7% error, the predictions of SPC/Fw and SPC/E models exhibit 13.9% and 23.1% deviations, respectively. Water viscosities obtained from SPC, TIP4P, and TIP3P models show larger deviations. Next, force-driven water flows in rigid (cold) and thermally vibrating (thermal) graphene nanochannels are simulated, resulting in pluglike velocity profiles. Large differences in the flow velocities are observed depending on the used water model and to a lesser extent on the choice of rigid vs thermal walls. Depending on the water model, the slip length of water on cold graphene walls varied between 34.2 nm and 62.9 nm, while the slip lengths of water on thermal graphene walls varied in the range of 38.1 nm-84.3 nm.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Engineering ThermodynamicsComplex Fluid Processin

    Real-time temperature measurement in stochastic rotation dynamics

    No full text
    Many physical and chemical processes involve energy change with rates that depend sensitively on local temperature. Important examples include heterogeneously catalyzed reactions and activated desorption. Because of the multiscale nature of such systems, it is desirable to connect the macroscopic world of continuous hydrodynamic and temperature fields to mesoscopic particle-based simulations with discrete particle events. In this work we show how to achieve real-time measurement of the local temperature in stochastic rotation dynamics (SRD), a mesoscale method particularly well suited for problems involving hydrodynamic flows with thermal fluctuations. We employ ensemble averaging to achieve local temperature measurement in dynamically changing environments. After validation by heat diffusion between two isothermal plates, heating of walls by a hot strip, and by temperature programed desorption, we apply the method to a case of a model flow reactor with temperature-sensitive heterogeneously catalyzed reactions on solid spherical catalysts. In this model, adsorption, chemical reactions, and desorption are explicitly tracked on the catalyst surface. This work opens the door for future projects where SRD is used to couple hydrodynamic flows and thermal fluctuations to solids with complex temperature-dependent surface mechanisms.Complex Fluid Processin

    Water flow in carbon nanotubes: The effect of tube flexibility and thermostat

    No full text
    Although the importance of temperature control in nonequilibrium molecular dynamics simulations is widely accepted, the consequences of the thermostatting approach in the case of strongly confined fluids are underappreciated. We show the strong influence of the thermostatting method on the water transport in carbon nanotubes (CNTs) by considering simulations in which the system temperature is controlled via the walls or via the fluid. Streaming velocities and mass flow rates are found to depend on the tube flexibility and on the thermostatting algorithm, with flow rates up to 20% larger when the walls are flexible. The larger flow rates in flexible CNTs are explained by a lower friction coefficient between water and the wall. Despite the lower friction, a larger solid-fluid interaction energy is found for flexible CNTs than for rigid ones. Furthermore, a comparison of thermostat schemes has shown that the Berendsen and Nosé-Hoover thermostats result in very similar transport rates, while lower flow rates are found under the influence of the Langevin thermostat. These findings illustrate the significant influence of the thermostatting methods on the simulated confined fluid transport.Process and Energ

    Prediction of fluid slip in cylindrical nanopores using equilibrium molecular simulations

    No full text
    We introduce an analytical method to predict the slip length (L s) in cylindrical nanopores using equilibrium molecular dynamics (EMD) simulations, following the approach proposed by Sokhan and Quirke for planar channels [39]. Using this approach, we determined the slip length of water in carbon nanotubes (CNTs) of various diameters. The slip length predicted from our method shows excellent agreement with the results obtained from nonequilibrium molecular dynamics (NEMD) simulations. The data show a monotonically decreasing slip length with an increasing nanotube diameter. The proposed EMD method can be used to precisely estimate slip length in high slip cylindrical systems, whereas, L s calculated from NEMD is highly sensitive to the velocity profile and may cause large statistical errors due to large velocity slip at the channel surface. We also demonstrated the validity of the EMD method in a BNNT-water system, where the slip length is very small compared to that in a CNT pore of similar diameter. The developed method enables us to calculate the interfacial friction coefficient directly from EMD simulations, while friction can be estimated using NEMD by performing simulations at various external driving forces, thereby increasing the overall computational time. The EMD analysis revealed a curvature dependence in the friction coefficient, which induces the slip length dependency on the tube diameter. Conversely, in flat graphene nanopores, both L s and friction coefficient show no strong dependency on the channel width.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Process and Energ

    Thermophoretic transport of ionic liquid droplets in carbon nanotubes

    No full text
    Thermal-gradient induced transport of ionic liquid (IL) and water droplets through a carbon nanotube (CNT) is investigated in this study using molecular dynamics simulations. Energetic analysis indicates that IL transport through a CNT is driven primarily by the fluid-solid interaction, while fluid-fluid interactions dominate in water-CNT systems. Droplet diffusion analysis via the moment scaling spectrum reveals sub-diffusive motion of the IL droplet, in contrast to the self-diffusive motion of the water droplet. The Soret coefficient and energetic analysis of the systems suggest that the CNT shows more affinity for interaction with IL than with the water droplet. Thermophoretic transport of IL is shown to be feasible, which can create new opportunities in nanofluidic applications.Accepted Author ManuscriptProcess and Energ
    corecore