1,371 research outputs found
Delamination and Crack Detection by the Synchronous Heating Method: Theoretical Aspects
In recent years a variety of NDT techniques utilizing an IR camera have been developed (for example [1–4]). In the synchronous heating method [3] an IR camera is used for detecting the surface temperature rise caused by a scanning laser beam. The movement of the heating beam is synchronized with the deflection mirror of the IR camera so the distance between the object point of the camera and the heating point remains constant. This measurement set-up allows rapid inspection of thin coatings that are otherwise problematic from the NDT point of view. In this paper we have computed numerically the temperature profile produced by a laser beam when it is scanned over the surface of a defective sample
The roles of species' relatedness and climate of origin in determining optical leaf traits over a large set of taxa growing at high elevation and high latitude
Climate change is driving many mountain plant species to higher elevations and northern plant species to higher latitudes. However, various biotic or abiotic constraints may restrict any range shift, and one relevant factor for migration to higher elevations could be species' ability to tolerate high UV-doses. Flavonoids are engaged in photoprotection, but also serve multiple ecological roles. We compared plant optical leaf trait responses of a large set of taxa growing in two botanical gardens (French Alps and southern Finland), considering potential constraints imposed by the relatedness of taxa and the legacy of climatic conditions at plants' original collection sites. The segregation of optically measured leaf traits along the phylogeny was studied using a published mega-tree GBOTB.extended.tre for vascular plants as a backbone. For a subset of taxa, we investigated the relationship between climatic conditions (namely solar radiation, temperature and precipitation at a coarse scale) at the plants' original collection site and current trait values. Upon testing the phylogenetic signal (Pagel's lambda), we found a significant difference but intermediate lambda values overall for flavonol or flavone index (I-flav) and anthocyanin index (I-ant), indicating that phylogenetic relatedness alone failed to explain the changes in trait values under a Brownian motion model of trait evolution. The local analysis (local indicator of phylogenetic association) indicated mostly positive autocorrelations for I-flav i.e. similarities in optically measured leaf traits, often among species from the same genus. We found significant relationships between climatic variables and leaf chlorophyll index (I-chl), but not I-flav, particularly for annual solar radiation. Changes in plants' I-flav across microhabitats differing in UV irradiance and predominately high F-v/F-m indicated that most plants studied had sufficient flexibility in photoprotection, conferred by I-flav, to acclimate to contemporary UV irradiances in their environment. While not explaining the mechanisms behind observed trait values, our findings do suggest that some high-elevation taxa display similar leaf flavonoid accumulation responses. These may be phylogenetically constrained and hence moderate plants' capacity to adjust to new combinations of environmental conditions resulting from climate change.Peer reviewe
Low attentional engagement makes attention network activity susceptible to emotional interference
The aim of this study was to investigate whether emotion-attention interaction depends on attentional engagement. To investigate emotional modulation of attention network activation, we used a functional MRI paradigm consisting of a visuospatial attention task with either frequent (high-engagement) or infrequent (low-engagement) targets and intermittent emotional or neutral distractors. The attention task recruited a bilateral frontoparietal network with no emotional interference on network activation when the attentional engagement was high. In contrast, when the attentional engagement was low, the unpleasant stimuli interfered with the activation of the frontoparietal attention network, especially in the right hemisphere. This study provides novel evidence for low attentional engagement making attention control network activation susceptible to emotional interference. © 2014 Wolters Kluwer Health | Lippincott Williams & Wilkins.Fil: Exposito, Veronica. FundaciĂłn para la Lucha contra las Enfermedades NeurolĂłgicas de la Infancia; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina. Universidad de Tampere; FinlandiaFil: Pickard, Natasha. California State University; Estados UnidosFil: Solbakk, Anne-Kristin. University of Oslo; NoruegaFil: Ogawa, Keith H.. Saint Mary's College Of California; Estados UnidosFil: Knight, Robert T.. California State University; Estados UnidosFil: Hartikainen, Kaisa M.. Universidad de Tampere; Finlandi
Bryozoan stable carbon and hydrogen isotopes: relationships between the isotopic composition of zooids, statoblasts and lake water
0000-0001-7279-715X© Springer International Publishing Switzerland 2015. The attached document is the authors' final accepted version of the journal article. You are advised to consult the publisher's version if you wish to cite from it
Reduced Frontal Nogo-N2 With Uncompromised Response Inhibition During Transcutaneous Vagus Nerve Stimulation—More Efficient Cognitive Control?
We have previously shown invasive vagus nerve stimulation to improve attention and working memory and alter emotion-attention interaction in patients with refractory epilepsy, suggesting that VNS might be useful in the treatment of cognitive impairment. The current research focuses on whether non-invasive, transcutaneous vagus nerve stimulation (tVNS) has similar effects to VNS. Furthermore, we aimed to assess whether tVNS has an impact on cognitive control in general or on underlying brain physiology in a task that mimics everyday life demands where multiple executive functions are engaged while encountering intervening emotional stimuli. Event-related potentials (ERP) evoked in such a task, specifically centro-parietal P3 and frontal N2 were used as biomarkers for attention allocation and cognitive control required to carry out the task. A single-blinded, sham-controlled, within-subject study on healthy subjects (n = 25) was conducted using Executive Reaction Time Test (RT-test), a Go/NoGo task engaging multiple executive functions along with intervening threat-related distractors while EEG was recorded. tVNS at the left tragus and sham stimulation at the left ear lobe was alternately delivered throughout the task. To assess the impact of tVNS on neural activity underlying attention and cognitive control, centro-parietal P3 and frontal N2 peak amplitudes were measured in Go and NoGo conditions. Task performance was assessed with RTs and different error types reflecting cognitive control in general and distinct executive functions, such as working memory and response inhibition.No significant effects due to tVNS on performance in the Executive RT-test were observed. For N2 there was a main effect of stimulator status and a significant interaction of trial type (Go, NoGo) and stimulator status. Post hoc analysis revealed that tVNS resulted in a significant reduction of frontal N2 only in the NoGo condition. No significant effects were observed for P3 nor were there any effects of emotion. Diminished NoGo-N2 potential along with unaltered task performance during tVNS suggests fewer cognitive control resources were required to successfully withhold a prepotent response. Though caution is warranted, we suggest that tVNS may lead to more efficient neural processing with fewer resources needed for successful cognitive control, providing promise for its potential use in cognitive enhancement.Peer reviewe
Plant species and growing season weather influence the efficiency of selenium biofortification
Se deficiency is widespread in agricultural soils; hence, agronomic Se biofortification is an important strategy to overcome its deficiency in humans and animals. InFinland, fertilizers have been amended with inorganic Se for over 20years to reverse the negative effects of low Se content in feed and food. Plant species, climatic conditions, other nutrients and soil properties affect the efficiency of Se biofortification. The present twoyears' study compared the ability of oilseed rape, wheat and forage grasses to uptake fertilizer Se applied as sodium selenate in a sub-boreal environment. The effect of foliar N application on Se uptake was tested in thesecond year. Se concentration was determined in plant parts and in soil samples taken at the end of growth season in both years as well as from another plot where Se fertilizer had been used for 20years. Se fertilizer recovery in harvested wheat and oilseed rape was 1-16%, and in forage grasses was 52-64% in the first harvest and 15-19% in the second harvest. Foliar N application improved Se uptake only at the higher Se fertilizer level. The efficiency of biofortification depended on weather conditions, with forage grasses being the most reliable crop. Oilseed rape as a Se semi-accumulator had no advantage in Se biofortification in field conditions due to low translocation to seeds.Peer reviewe
Measurements and Variability of Arterial Blood Pressure and Heart Interval in Conscious and Anesthetized Dogs
No abstract availabl
The roles of species’ relatedness and climate of origin in determining optical leaf traits over a large set of taxa growing at high elevation and high latitude
Climate change is driving many mountain plant species to higher elevations and northern plant species to higher latitudes. However, various biotic or abiotic constraints may restrict any range shift, and one relevant factor for migration to higher elevations could be species’ ability to tolerate high UV-doses. Flavonoids are engaged in photoprotection, but also serve multiple ecological roles. We compared plant optical leaf trait responses of a large set of taxa growing in two botanical gardens (French Alps and southern Finland), considering potential constraints imposed by the relatedness of taxa and the legacy of climatic conditions at plants’ original collection sites. The segregation of optically measured leaf traits along the phylogeny was studied using a published mega-tree GBOTB.extended.tre for vascular plants as a backbone. For a subset of taxa, we investigated the relationship between climatic conditions (namely solar radiation, temperature and precipitation at a coarse scale) at the plants’ original collection site and current trait values. Upon testing the phylogenetic signal (Pagel’s λ), we found a significant difference but intermediate lambda values overall for flavonol or flavone index (Iflav) and anthocyanin index (Iant), indicating that phylogenetic relatedness alone failed to explain the changes in trait values under a Brownian motion model of trait evolution. The local analysis (local indicator of phylogenetic association) indicated mostly positive autocorrelations for Iflav i.e. similarities in optically measured leaf traits, often among species from the same genus. We found significant relationships between climatic variables and leaf chlorophyll index (Ichl), but not Iflav, particularly for annual solar radiation. Changes in plants’ Iflav across microhabitats differing in UV irradiance and predominately high F v /F m indicated that most plants studied had sufficient flexibility in photoprotection, conferred by Iflav, to acclimate to contemporary UV irradiances in their environment. While not explaining the mechanisms behind observed trait values, our findings do suggest that some high-elevation taxa display similar leaf flavonoid accumulation responses. These may be phylogenetically constrained and hence moderate plants’ capacity to adjust to new combinations of environmental conditions resulting from climate change
Understorey light quality affects leaf pigments and leaf phenology in different plant functional types
Forest understorey plants receive most sunlight in springtime before canopy closure, and in autumn following leaf-fall. We hypothesized that plant species must adjust their phenological and photoprotective strategies in response to large changes in the spectral composition of the sunlight they receive. Here, we identified how plant species growing in northern deciduous and evergreen forest understoreys differ in their response to blue light and ultraviolet (UV) radiation according to their functional strategy. We installed filters in a forest understorey in southern Finland, to create the following treatments attenuating: UV radiation < 350 nm, all UV radiation (< 400 nm), all blue light and UV radiation (< 500 nm), and a transparent control. In eight species, representing different functional strategies, we assessed leaf optical properties, phenology, and epidermal flavonoid contents over two years. Blue light accelerated leaf senescence in all species measured in the understorey, apart from Quercus robur seedlings, whereas UV radiation only accelerated leaf senescence in Acer platanoides seedlings. More light-demanding species accumulated flavonols in response to seasonal changes in light quality compared to shade-tolerant and wintergreen species and were particularly responsive to blue light. Reduction of blue and UV radiation under shade reveals an important role for microclimatic effects on autumn phenology and leaf photoprotection. An extension of canopy cover under climate change, and its associated suppression of understorey blue light and UV radiation, may delay leaf senescence for understorey species with an autumn niche.Peer reviewe
- …