987 research outputs found

    The Role of Response Effort in Maintaining the Use of an Alternative Activity to Reduce Self-Injurious Behavior in Adults with Developmental Disabilities

    Get PDF
    The use of alternative activities has been shown to be effective in reducing SIB in persons with profound mental retardation. Alternative activities for three participants who exhibited self-stimulatory and self-injurious behavior (SIB) were identified using a stimulus preference assessment. Items identified produced a low rate of SIB and a high rate of object participation as compared to the baseline condition. The level of response effort needed to maintain those rates was manipulated to determine the efficacy of two conditions: immediate and remote access to the item. This evaluation was conducted within an alternative treatment design (ATD) with additional generalization probes. The immediate access condition resulted in low rates of SIB and high rates of object participation, whereas the remote access condition produced high rates of SIB and zero rates of object participation. These findings were consistent through the generalization sessions. Results of the study illustrate the importance of considering the amount of effort needed to obtain an object which reduces self-stimulatory or self-injurious behavior in persons with profound mental retardation. The activity must be immediately accessible if it is to have a significant effect

    Transient analogy to the steady state problem of heat transfer from a vibrating horizontal cylinder

    Get PDF
    A transient method of finding the effect of vibration on heat transfer from a horizontal cylinder to air was developed using amplitudes from 0.001 to 0.75 inches, and frequencies from 10 to 500 cycles per second

    On the Shoulders of Giants: The Progress of Science in the Seventeenth Century

    Get PDF
    This article gives a brief synopsis of the scientific advancements made during the seventeenth century, the literature of which can partly be found at Syracuse University Special Collections. The author argues that the progenitors of the new scientific thought such as Galileo were not at odds with the mysticism and occultism of the past, and in fact still embraced certain parts of that Middle Ages past

    Epstein-Barr virus nuclear antigen 3A protein regulates CDKN2B transcription via interaction with MIZ-1

    Get PDF
    The Epstein-Barr virus (EBV) nuclear antigen 3 family of protein is critical for the EBV-induced primary B-cell growth transformation process. Using a yeast two-hybrid screen we identified 22 novel cellular partners of the EBNA3s. Most importantly, among the newly identified partners, five are known to play direct and important roles in transcriptional regulation. Of these, the Myc-interacting zinc finger protein-1 (MIZ-1) is a transcription factor initially characterized as a binding partner of MYC. MIZ-1 activates the transcription of a number of target genes including the cell cycle inhibitor CDKN2B. Focusing on the EBNA3A/MIZ-1 interaction we demonstrate that binding occurs in EBV-infected cells expressing both proteins at endogenous physiological levels and that in the presence of EBNA3A, a significant fraction of MIZ-1 translocates from the cytoplasm to the nucleus. Moreover, we show that a trimeric complex composed of a MIZ-1 recognition DNA element, MIZ-1 and EBNA3A can be formed, and that interaction of MIZ-1 with nucleophosmin (NPM), one of its coactivator, is prevented by EBNA3A. Finally, we show that, in the presence of EBNA3A, expression of the MIZ-1 target gene, CDKN2B, is downregulated and repressive H3K27 marks are established on its promoter region suggesting that EBNA3A directly counteracts the growth inhibitory action of MIZ-1

    Photoionization in the time and frequency domain

    Full text link
    Ultrafast processes in matter, such as the electron emission following light absorption, can now be studied using ultrashort light pulses of attosecond duration (101810^{-18}s) in the extreme ultraviolet spectral range. The lack of spectral resolution due to the use of short light pulses may raise serious issues in the interpretation of the experimental results and the comparison with detailed theoretical calculations. Here, we determine photoionization time delays in neon atoms over a 40 eV energy range with an interferometric technique combining high temporal and spectral resolution. We spectrally disentangle direct ionization from ionization with shake up, where a second electron is left in an excited state, thus obtaining excellent agreement with theoretical calculations and thereby solving a puzzle raised by seven-year-old measurements. Our experimental approach does not have conceptual limits, allowing us to foresee, with the help of upcoming laser technology, ultra-high resolution time-frequency studies from the visible to the x-ray range.Comment: 5 pages, 4 figure

    Temperature dependency of the laminar burning velocity of fuel-rich methane oxygen measurements

    Get PDF
    First experiments to determine laminar burning velocities of methane-pure oxygen mixtures were carried out in 1932 by Jahn [1] for a wide range of equivalence ratios Φ (0.2 to 2.64) using a Bunsen burner. Since then, new and most important more accurate methods were developed to determine laminar burning velocities. One of these methods, namely the Heat Flux Method, which was introduced by de Goey et al. [2] in 1993, was used in the current work to validate the results for fuel-rich methane oxygen mixtures (Φ = 2.38 to 2.64) as published by Jahn. Regarding the current Heat Flux Bruner setup the range of velocities that can be determined are limited between 9 and 50 cm/s, which also limits the range of investigated equivalence ratios (Φ = 2.38 to 3.03), which is wider as the one investigated by Jahn [1]. Furthermore, the influence of the pre-heating temperature was also investigated by a variation of it from 263 up to 455 K. Based on these experimental data the temperature dependency of laminar burning velocities of fuel-rich methane oxygen mixtures was determined and as a result the coefficient α of the power law correlation SL = SL0 (T/T0)α was calculated. Due to the increase of the laminar burning velocity at higher pre-heating temperatures, the laminar burning velocities could also be determined at equivalence ratios up to a maximum value of Φ = 3.33 (TP = 455 K). The increase in accuracy of measurement methods to determine laminar burning velocities over the last decades [3] leads to an observed decrease in measured flame speeds. This tendency is confirmed in the current experiments, where the determined laminar burning velocities are lower than the ones measured by Jahn [1]. Regarding the temperature dependency of the laminar burning velocity, the results indicate that for the range of investigated equivalence ratios and temperatures (300 K to 455 K) the power law coefficient α was observed to be almost constant

    The impact of neuron morphology on cortical network architecture

    Get PDF
    The neurons in the cerebral cortex are not randomly interconnected. This specificity in wiring can result from synapse formation mechanisms that connect neurons, depending on their electrical activity and genetically defined identity. Here, we report that the morphological properties of the neurons provide an additional prominent source by which wiring specificity emerges in cortical networks. This morphologically determined wiring specificity reflects similarities between the neurons’ axo-dendritic projections patterns, the packing density, and the cellular diversity of the neuropil. The higher these three factors are, the more recurrent is the topology of the network. Conversely, the lower these factors are, the more feedforward is the network’s topology. These principles predict the empirically observed occurrences of clusters of synapses, cell type-specific connectivity patterns, and nonrandom network motifs. Thus, we demonstrate that wiring specificity emerges in the cerebral cortex at subcellular, cellular, and network scales from the specific morphological properties of its neuronal constituents

    Recent and future trends in synthetic greenhouse gas radiative forcing

    Get PDF
    Atmospheric measurements show that emissions of hydrofluorocarbons (HFCs) and hydrochlorofluorocarbons are now the primary drivers of the positive growth in synthetic greenhouse gas (SGHG) radiative forcing. We infer recent SGHG emissions and examine the impact of future emissions scenarios, with a particular focus on proposals to reduce HFC use under the Montreal Protocol. If these proposals are implemented, overall SGHG radiative forcing could peak at around 355 mW m[superscript −2] in 2020, before declining by approximately 26% by 2050, despite continued growth of fully fluorinated greenhouse gas emissions. Compared to “no HFC policy” projections, this amounts to a reduction in radiative forcing of between 50 and 240 mW m[superscript −2] by 2050 or a cumulative emissions saving equivalent to 0.5 to 2.8 years of CO2 emissions at current levels. However, more complete reporting of global HFC emissions is required, as less than half of global emissions are currently accounted for.Natural Environment Research Council (Great Britain) (Advanced Research Fellowship NE/I021365/1)United States. National Aeronautics and Space Administration (Upper Atmospheric Research Program Grant NNX11AF17G)United States. National Oceanic and Atmospheric Administratio
    corecore