3,028 research outputs found

    Access to EEOC Files concerning Private Employers

    Get PDF

    Evaluate molecular heating concept and principles of operation

    Get PDF
    Issued as Final report, Project no. G-41-60

    Theory of high resolution molecular spectra

    Get PDF
    Issued as Annual report and Final report, Project no. G-41-61

    Learning is Diverse: The Dynamics of Change

    Get PDF
    Educational models of the 20th century in the United States responded directly to the then current economic circumstances and workforce needs. Schools throughout the United States were designed on those educational models of production and efficiently. While educational models have since changed in response to societal shifts, now emphasizing flexibility, diversity, and the integration of technology, the design of school infrastructure has not made that leap. By reconceptualizing the boundaries between elements and opening existing structure schools can be redesigned to align with the new educational model. This creates collaboration between different levels of expertise, the exploration of relationships between subjects, and the autonomous learner

    Theory of high resolution molecular spectra

    Get PDF
    Issued as Progress report and Final report, Project no. G-41-64

    Investigations of excitation energy transfer and intramolecular interactions in a nitrogen corded distrylbenzene dendrimer system.

    Get PDF
    The photophysics of an amino-styrylbenzene dendrimer (A-DSB) system is probed by time-resolved and steady state luminescence spectroscopy. For two different generations of this dendrimer, steady state absorption, emission, and photoluminescence excitation spectra are reported and show that the efficiency of energy transfer from the dendrons to the core is very close to 100%. Ultrafast time-resolved fluorescence measurements at a range of excitation and detection wavelengths suggest rapid (and hence efficient) energy transfer from the dendron to the core. Ultrafast fluorescence anisotropy decay for different dendrimer generations is described in order to probe the energy migration processes. A femtosecond time-scale fluorescence depolarization was observed with the zero and second generation dendrimers. Energy transfer process from the dendrons to the core can be described by a Förster mechanism (hopping dynamics) while the interbranch interaction in A-DSB core was found to be very strong indicating the crossover to exciton dynamics

    A parity-breaking electronic nematic phase transition in the spin-orbit coupled metal Cd2_2Re2_2O7_7

    Get PDF
    Strong electron interactions can drive metallic systems toward a variety of well-known symmetry-broken phases, but the instabilities of correlated metals with strong spin-orbit coupling have only recently begun to be explored. We uncovered a multipolar nematic phase of matter in the metallic pyrochlore Cd2_2Re2_2O7_7 using spatially resolved second-harmonic optical anisotropy measurements. Like previously discovered electronic nematic phases, this multipolar phase spontaneously breaks rotational symmetry while preserving translational invariance. However, it has the distinguishing property of being odd under spatial inversion, which is allowed only in the presence of spin-orbit coupling. By examining the critical behavior of the multipolar nematic order parameter, we show that it drives the thermal phase transition near 200 kelvin in Cd2_2Re2_2O7_7 and induces a parity-breaking lattice distortion as a secondary order.Comment: 9 pages main text, 4 figures, 10 pages supplementary informatio

    Meeting the Challenge of Substitute Dairy Products

    Get PDF

    Increasing Groundwater Availability and Seasonal Base Flow Through Agricultural Managed Aquifer Recharge in an Irrigated Basin

    Get PDF
    Groundwater aquifers provide an important “insurance” against climate variability. Due to prolonged droughts and/or irrigation demands, groundwater exploitation results in significant groundwater storage depletion. Managed aquifer recharge (MAR) is a promising management practice that intentionally places or retains more water in groundwater aquifers than would otherwise naturally occur. In this study, we examine the possibility of using large irrigated agricultural areas as potential MAR locations (Ag-MAR). Using the California Central Valley Groundwater-Surface Water Simulation Model we tested four different agricultural recharge land distributions, two streamflow diversion locations, eight recharge target amounts, and five recharge timings. These scenarios allowed a systematic evaluation of Ag-MAR on changes in regional, long-term groundwater storage, streamflow, and groundwater levels. The results show that overall availability of stream water for recharge is critical for Ag-MAR systems. If stream water availability is limited, longer recharge periods at lower diversion rates allow diverting larger volumes and more efficient recharge compared to shorter diversion periods with higher rates. The recharged stream water increases both groundwater storage and net groundwater contributions to streamflow. During the first decades of Ag-MAR operation, the diverted water contributed mainly to groundwater storage. After 80 years of Ag-MAR operation about 34% of the overall diverted water remained in groundwater storage while 66% discharged back to streams, enhancing base flow during months with no recharge diversions. Groundwater level rise is shown to vary with the spatial and temporal distribution of Ag-MAR. Overall, Ag-MAR is shown to provide long-term benefits for water availability, in groundwater and in streams
    • …
    corecore