858 research outputs found

    Portunes: generating attack scenarios by finding inconsistencies between security policies in the physical, digital and social domain

    Get PDF
    The security goals of an organization are implemented through security policies, which concern physical security, digital security and security awareness. An insider is aware of these security policies, and might be able to thwart the security goals without violating any policies, by combining physical, digital and social means. This paper presents the Portunes model, a model for describing and analyzing attack scenarios across the three security areas. Portunes formally describes security alignment of an organization and finds attack scenarios by analyzing inconsistencies between policies from the different security areas. For this purpose, the paper defines a language in the tradition of the Klaim family of languages, and uses graph-based algorithms to find attack scenarios that can be described using the defined language

    Towards an Information Theoretic Analysis of Searchable Encryption (Extended Version)

    Get PDF
    Searchable encryption is a technique that allows a client to store data in encrypted form on a curious server, such that data can be retrieved while leaking a minimal amount of information to the server. Many searchable encryption schemes have been proposed and proved secure in their own computational model. In this paper we propose a generic model for the analysis of searchable encryptions. We then identify the security parameters of searchable encryption schemes and prove information theoretical bounds on the security of the parameters. We argue that perfectly secure searchable encryption schemes cannot be efficient. We classify the seminal schemes in two categories: the schemes that leak information upfront during the storage phase, and schemes that leak some information at every search. This helps designers to choose the right scheme for an application

    Energy-Efficient Streaming Using Non-volatile Memory

    Get PDF
    The disk and the DRAM in a typical mobile system consume a significant fraction (up to 30%) of the total system energy. To save on storage energy, the DRAM should be small and the disk should be spun down for long periods of time. We show that this can be achieved for predominantly streaming workloads by connecting the disk to the DRAM via a large non-volatile memory (NVM). We refer to this as the NVM-based architecture (NVMBA); the conventional architecture with only a DRAM and a disk is referred to as DRAMBA. The NVM in the NVMBA acts as a traffic reshaper from the disk to the DRAM. The total system costs are balanced, since the cost increase due to adding the NVM is compensated by the decrease in DRAM cost. We analyze the energy saving of NVMBA, with NAND flash memory serving as NVM, relative to DRAMBA with respect to (1) the streaming demand, (2) the disk form factor, (3) the best-effort provision, and (4) the stream location on the disk. We present a worst-case analysis of the reliability of the disk drive and the flash memory, and show that a small flash capacity is sufficient to operate the system over a year at negligible cost. Disk lifetime is superior to flash, so that is of no concern

    Adaptively Secure Computationally Efficient Searchable Symmetric Encryption

    Get PDF
    Searchable encryption is a technique that allows a client to store documents on a server in encrypted form. Stored documents can be retrieved selectively while revealing as little information as\ud possible to the server. In the symmetric searchable encryption domain, the storage and the retrieval are performed by the same client. Most conventional searchable encryption schemes suffer\ud from two disadvantages.\ud First, searching the stored documents takes time linear in the size of the database, and/or uses heavy arithmetic operations.\ud Secondly, the existing schemes do not consider adaptive attackers;\ud a search-query will reveal information even about documents stored\ud in the future. If they do consider this, it is at a significant\ud cost to updates.\ud In this paper we propose a novel symmetric searchable encryption\ud scheme that offers searching at constant time in the number of\ud unique keywords stored on the server. We present two variants of\ud the basic scheme which differ in the efficiency of search and\ud update. We show how each scheme could be used in a personal health\ud record system

    First irradiation results using the neurosphere formation assay

    Get PDF

    Effect of hypoxia on the growth of glioma-initiating cells

    Get PDF

    Survival of chemoresistant cancer cells exposed to X-rays and heavy ions

    Get PDF
    • ā€¦
    corecore