761 research outputs found

    Examining coastal dynamics and recreational water quality by quantifying multiple sewage specific markers in a North Carolina estuary

    Get PDF
    Fecal contamination is observed downstream of municipal separate storm sewer systems in coastal North Carolina. While it is well accepted that wet weather contributes to this phenomenon, less is understood about the contribution of the complex hydrology in this low-lying coastal plain. A quantitative microbial assessment was conducted in Beaufort, North Carolina to identify trends and potential sources of fecal contamination in stormwater receiving waters. Fecal indicator concentrations were significantly higher in receiving water downstream of a tidally submerged outfall compared to an outfall that was permanently submerged (p < 0.001), though tidal height was not predictive of human-specific microbial source tracking (MST) marker concentrations at the tidally submerged site. Short-term rainfall (i.e. <12 h) was predictive of E. coli, Enterococcus spp., and human-specific MST marker concentrations (Fecal Bacteroides, BacHum, and HF183) in receiving waters. The strong correlation between 12-hr antecedent rainfall and Enterococcus spp. (r = 0.57, p < 0.001, n = 92) suggests a predictive model could be developed based on rainfall to communicate risk for bathers. Additional molecular marker data indicates that the delivery of fecal sources is complex and highly variable, likely due to the influence of tidal influx (saltwater intrusion from the estuary) into the low-lying stormwater pipes. In particular, elevated MST marker concentrations (up to 2.56 Ă— 104 gene copies HF183/mL) were observed in standing water near surcharging street storm drain. These data are being used to establish a baseline for stormwater dynamics prior to dramatic rainfall in 2018 and to characterize the interaction between complex stormwater dynamics and water quality impairment in coastal NC

    Solving non-uniqueness in agglomerative hierarchical clustering using multidendrograms

    Full text link
    In agglomerative hierarchical clustering, pair-group methods suffer from a problem of non-uniqueness when two or more distances between different clusters coincide during the amalgamation process. The traditional approach for solving this drawback has been to take any arbitrary criterion in order to break ties between distances, which results in different hierarchical classifications depending on the criterion followed. In this article we propose a variable-group algorithm that consists in grouping more than two clusters at the same time when ties occur. We give a tree representation for the results of the algorithm, which we call a multidendrogram, as well as a generalization of the Lance and Williams' formula which enables the implementation of the algorithm in a recursive way.Comment: Free Software for Agglomerative Hierarchical Clustering using Multidendrograms available at http://deim.urv.cat/~sgomez/multidendrograms.ph

    The spectrum of screening masses near T_c: predictions from universality

    Get PDF
    We discuss the spectrum of screening masses in a pure gauge theory near the deconfinement temperature from the point of view of the dimensionally reduced model describing the spontaneous breaking of the center symmetry. Universality arguments can be used to predict the values of the mass ratios in the scaling region of the deconfined phase when the transition is of second order. One such prediction is that the scalar sector of the screening spectrum in SU(2) pure gauge theory contains a bound state of the fundamental excitation, corresponding through universality to the bound state found in the 3D Ising model and phi^4 theory in the broken symmetry phase. A Monte Carlo evaluation of the screening masses in the gauge theory confirms the validity of the prediction. We briefly discuss the possibility of using similar arguments for first order deconfinement transitions, and in particular for the physically relevant case of SU(3).Comment: 12 pages, 3 figures. Some changes in the discussion, added references, results unchanged. Version to appear in Phys. Rev.

    Quark number susceptibilities of hot QCD up to g^6ln(g)

    Get PDF
    The pressure of hot QCD has recently been determined to the last perturbatively computable order g^6 ln(g) by Kajantie et al. using three-dimensional effective theories. A similar method is applied here to the pressure in the presence of small but non-vanishing quark chemical potentials, and the result is used to derive the quark number susceptibilities in the limit mu = 0. The diagonal quark number susceptibility of QCD with n_f flavours of massless quarks is evaluated to order g^6ln(g) and compared with recent lattice simulations. It is observed that the results qualitatively resemble the lattice ones, and that when combined with the fully perturbative but yet undetermined g^6 term they may well explain the behaviour of the lattice data for a wide range of temperatures.Comment: 11 pages, 3 figures Typos corrected, references added, figures modifie

    Heavy Quark Free Energies and Screening in SU(2) Gauge Theory

    Full text link
    We investigate the singlet, triplet and colour average heavy quark free energies in SU(2) pure gauge theory at various temperatures T. We focus on the long distance behaviour of the free energies, studying in particular the temperature dependence of the string tension and the screening masses. The results are qualitatively similar to the SU(3) scenario, except near the critical temperature Tc of the deconfining transition. Finally we test a recently proposed method to renormalize the Polyakov loop.Comment: 5 pages, 4 figures, contribution to the Proceedings of SEWM 2002 (Heidelberg

    Algorithms for Lattice QCD with Dynamical Fermions

    Full text link
    We consider recent progress in algorithms for generating gauge field configurations that include the dynamical effects of light fermions. We survey what has been achieved in recent state-of-the-art computations, and examine the trade-offs between performance and control of systematic errors. We briefly review the use of polynomial and rational approximations in Hybrid Monte Carlo algorithms, and some of the theory of on-shell chiral fermions on the lattice. This provides a theoretical framework within which we compare algorithmic alternatives for their implementation; and again we examine the trade-offs between speed and error control.Comment: Review presented at Lattice2004(plenary), Fermilab, June 21-26, 2004. 14 pages, 8 figure

    A remark on non-Abelian classical kinetic theory

    Get PDF
    It is known that non-Abelian classical kinetic theory reproduces the Hard Thermal/Dense Loop (HTL/HDL) effective action of QCD, obtained after integrating out the hardest momentum scales from the system, as well as the first higher dimensional operator beyond the HTL/HDL level. We discuss here its applicability at still higher orders, by comparing the exact classical effective action obtained in the static limit, with the 1-loop quantum effective potential. We remark that while correct types of operators arise, the classical colour algebra reproduces correctly the prefactor of the 4-point function trA04tr A_0^4 only for matter in asymptotically high dimensional colour representations.Comment: 6 page

    Covariant derivative expansion of Yang-Mills effective action at high temperatures

    Full text link
    Integrating out fast varying quantum fluctuations about Yang--Mills fields A_i and A_4, we arrive at the effective action for those fields at high temperatures. Assuming that the fields A_i and A_4 are slowly varying but that the amplitude of A_4 is arbitrary, we find a non-trivial effective gauge invariant action both in the electric and magnetic sectors. Our results can be used for studying correlation functions at high temperatures beyond the dimensional reduction approximation, as well as for estimating quantum weights of classical static configurations such as dyons.Comment: Minor changes. References added. Paper accepted for publication in Phys.Rev.

    The pressure of QCD at finite temperatures and chemical potentials

    Full text link
    The perturbative expansion of the pressure of hot QCD is computed here to order g^6ln(g) in the presence of finite quark chemical potentials. In this process all two- and three-loop one-particle irreducible vacuum diagrams of the theory are evaluated at arbitrary T and mu, and these results are then used to analytically verify the outcome of an old order g^4 calculation of Freedman and McLerran for the zero-temperature pressure. The results for the pressure and the different quark number susceptibilities at high T are compared with recent lattice simulations showing excellent agreement especially for the chemical potential dependent part of the pressure.Comment: 35 pages, 6 figures; text revised, one figure replace
    • …
    corecore