22 research outputs found

    Intracellular Monitoring by Dendritic Cells - A New Way to Stay Informed - from a Simple Scavenger to an Active Gatherer

    Get PDF
    Dendritic cells (DCs) are required for the initiation of the adaptive immune response. Their ability to acquire antigens in the periphery is a critical step in this process. DCs express a wide variety of adhesion molecules and possess an extremely fluid plasma membrane that facilitates scavenging the extracellular environment and capturing material like exosomes, apoptotic bodies, and pathogens. Besides these standard routes, the acquisition of antigens by DCs can be further facilitated by tunneling nanotubes, trogocytosis, and gap junctions. However, in this article, we will argue that this is an incomplete picture, as certain observations in the literature cannot be explained if we assume DCs acquire antigens only through these means. Instead, it is more likely that DCs preferentially use adhesion molecules to form long-lasting cell-cell interactions to actively siphon material from cells they are in direct contact with. It is highly likely that DCs use this mechanism to continually capture membrane and cytosolic material directly from surrounding cells, which they scan to assess the health of the donor cell. Doing so would provide an array of advantages for the host immune system, as it would not be reliant on compromised cells to release antigens into the extracellular milieu. Therefore, we propose updating our view of DC antigen acquisition to include a process of active, contact-dependent capture of material directly from neighboring cell cytosol (cytocytosis), which we would term intracellular monitoring

    Cerebrospinal Fluid Cytokine and Chemokine Patterns in Central Nervous System Infections, Hemorrhage and Neoplasms

    Get PDF
    Cytokines and chemokines are soluble proteins that act as regulators of cellular functions throughout the body. Cytokines and chemokines released in the setting of various CNS disorders appear in the CSF compartment where determination of their levels can provide insight into pathogenic processes such as neuroinflammation. We utilized the Millipore HCYTOMAG 60K assay/kit/system to perform multiplex profiling of 42 different cytokines/chemokines in the CSF of patients with a variety of distinct CNS disease processes, including infection, hemorrhage and neoplasia. CNS infections included viral (Chronic Parechovirus type 3 (HPeV3), Enterovirus (EV) 68, Adenovirus, JC virus, West Nile virus), bacterial (Mycobacterium tuberculosis, Borrelia burgdorferi, Propionibacterium acnes, Staphylococcus epidermidis, Streptococcus sp.), fungal (Cryptococcus neoformans) and single celled parasite (Toxoplasma gondii). CSF specimens negative for infectious organisms in noninflammatory conditions were selected as controls. Additional non-infectious samples tested were obtained from patients with subarachnoid hemorrhage (SAH) and following surgery for glioblastoma. The glioblastoma samples were noteworthy in having negligible elevations in the cytokines/chemokines tested. CSF from patients with SAH was elevated in only MCP-1/CCL2. Distinct patterns of cytokine/chemokine expression were detected for each infectious patient population. Picornavirus infections HPeV3 and EV68 were associated with increased levels of the monocyte chemoattractant protein MCP-1/CCL2 when compared to non-infectious, non-inflammatory samples. In contrast to chronic HPeV3 infection, EV68 encephalitis was associated with increased CSF levels of additional cytokines; CCLX1, IL-4 and IL-7. Adenovirus infection was associated with markedly higher levels of fractalkine in CSF when compared to any of the other non-inflammatory, infectious, hemorrhage or tumor cases. CSF from a Mycobacterium tuberculosis infection demonstrated increased levels of a greater variety of cytokines/chemokines than any of the other groups tested. Patterns of cytokine/chemokine expression in the CNS reveal characteristics of the host innate response that provide insight into the disease process and potential targets for therapeutic intervention

    Human Parechovirus and Enterovirus Initiate Divergent Innate Immune Responses in the CNS: Pathogenic and Diagnostic Implications

    Get PDF
    The picornaviruses human parechovirus (HPeV) and enterovirus (EV) cause a wide range of diseases, including CNS infections, which can be severe and potentially fatal. EV causes most cases of pediatric meningoencephalitis worldwide, and HPeV type 3 (HPeV3) is the most common cause of viral meningitis in young infants. Each year in the United States, there are over 75,000 cases of aseptic meningitis. Despite reassuring short-term outcomes, negative neurodevelopmental sequalae are increasingly associated with HPeV and EV. The pathogenesis and severity of HPeV and EV infections are undoubtedly linked to the innate and adaptive immune responses elicited by these viruses. Until this work, the innate immune response mounted against HPeV was largely unknown. Pattern recognition receptors in the CNS, including a number of Toll-like receptors located in different cells and subcellular compartments, detect invading pathogens and cause the release of cytokines and chemokines almost immediately into the CSF compartment at measurable levels. Essentially, this allows for determination of an amplified, infectious agent-specific pattern. These virus specific patterns of innate immune activation may provide insight into the pathogenesis of the corresponding disease states. Also, since these infections have similar clinical presentations, the immune profiles may be useful for rapid pathogen diagnosis in the clinical setting

    Cancer-Associated Fibroblast Density, Prognostic Characteristics, and Recurrence in Head and Neck Squamous Cell Carcinoma: A Meta-Analysis.

    Get PDF
    Introduction: The progression and clinical course of head and neck squamous cell carcinoma (HNSCC) relies on complex interactions between cancer and stromal cells in the tumor microenvironment (TME). Among the most abundant of these stromal cells are cancer-associated fibroblasts (CAFs). While their contribution to tumor progression is widely acknowledged, and various CAF-targeted treatments are under development, the relationship between CAF density and the clinicopathologic course of HNSCC has not been clearly defined. Here we examine the published evidence investigating the relationship of cancer-associated fibroblasts to local recurrence and indicators of prognostic significance in HNSCC. Methods: We conducted a meta-analysis of existing publications that compare the relationship between CAF density, local recurrence, and clinically significant pathologic criteria of disease development (T stage, nodal positivity, clinical stage, vascular invasion, perineural invasion, Ki67 expression, and differentiation). Thirteen studies met the selection criteria, providing a total study population of 926 patients. Forest plots and risk ratios were generated to illustrate overall relationships. Results: Higher CAF density within the tumor microenvironment is associated with advanced T stage, nodal infiltration, clinical stage, vascular invasion, perineural invasion, Ki67 expression, and differentiation (p Conclusions: Across multiple studies, increased CAF density is correlated with histopathological criteria of poor prognosis in HNSCC. These findings highlight that CAFs may play a pivotal role in HNSCC development and progression. Staining for CAFs may represent a valuable addition to current pathologic analysis and help to guide prognosis and treatment. Understanding the mechanisms by which CAFs reciprocally interact with cancer cells will be crucial for optimization of TME-focused treatment of HNSCC

    Predictive Capacity of Immune-Related Adverse Events and Cytokine Profiling in Neoadjuvant Immune Checkpoint Inhibitor Trials for Head and Neck Squamous Cell Carcinoma\

    Get PDF
    OBJECTIVES: Certain low-level immune-related adverse events (irAEs) have been associated with survival benefits in patients with various solid tumors on immune checkpoint inhibitors (ICIs). We aimed to investigate the association between irAEs and response to neoadjuvant ICIs in patients with head and neck squamous cell carcinoma (HNSCC) and to identify differences in circulating cytokine levels based on irAE status. METHODS: This was a retrospective cohort study including three neoadjuvant clinical trials from July 2017 to January 2022: NCT03238365 (nivolumab ± tadalafil), NCT03854032 (nivolumab ± BMS986205), NCT03618654 (durvalumab ± metformin). The presence and type of irAEs, pathologic treatment response, and survival were compared. Canonical linear discriminant analysis (LDA) was performed to identify combinations of circulating cytokines predictive of irAEs using plasma sample multiplex assay. RESULTS: Of 113 participants meeting inclusion criteria, 32 (28.3%) developed irAEs during treatment or follow-up. Positive p16 status was associated with irAEs (odds ratio [OR] 2.489; 95% CI 1.069-6.119; p = 0.043). irAEs were associated with pathologic treatment response (OR 3.73; 95% CI 1.34-10.35; p = 0.011) and with higher OS in the combined cohort (HR 0.319; 95% CI 0.113-0.906; p = 0.032). Patients with irAEs within the nivolumab cohort had significant elevations of select cytokines pre-treatment. Canonical LDA identified key drivers of irAEs among all trials, which were highly predictive of future irAE status. CONCLUSIONS: irAEs are associated with response to neoadjuvant ICI therapy in HNSCC and can serve as clinical indicators for improved clinical outcomes. irAEs can be predicted by concentrations of several circulating cytokines prior to treatment

    Nivolumab and ipilimumab in combination with radiotherapy in patients with high-risk locally advanced squamous cell carcinoma of the head and neck.

    Get PDF
    BACKGROUND: The combination of nivolumab and ipilimumab has been approved for the treatment of multiple solid tumors. This was a phase I study investigating definitive radioimmunotherapy (RIT) with nivolumab and ipilimumab for the treatment of locally advanced (LA) squamous cell carcinoma of the head and neck (SCCHN). METHODS: Patients with newly diagnosed, stage IVA-IVB SCCHN eligible for cisplatin-based chemotherapy received nivolumab (3 mg/kg every 2 weeks for a total of 17 doses) and ipilimumab (1 mg/kg every 6 weeks for a total of 6 doses) starting 2 weeks prior to radiotherapy. The primary endpoint was safety of definitive RIT. Secondary endpoints included progression-free survival (PFS) and overall survival (OS). Exploratory endpoints included the association of baseline programmed death-ligand 1 (PD-L1) expression as well as on-treatment changes in immune bias with treatment outcomes. RESULTS: Twenty-four patients were enrolled. With a median follow-up of 36.1 months, grade 3 or higher treatment-related adverse events were reported in 21 individuals (88%); 5 individuals developed in-field soft tissue ulceration during consolidation immunotherapy, resulting in one fatality. The 3-year PFS and OS rates were 74% (95% CI 58% to 94%) and 96% (95% CI 88% to 100%), respectively. PD-L1 combined positive score (CPS) did not correlate with death or disease progression. Decreases in extracellular vesicle PD-L1 within the concurrent RIT phase were associated with prolonged PFS (p=0.006). Also, interval decreases in circulating interleukin (IL)4, IL9, IL12, and IL17a during concurrent RIT were associated with subsequent ulceration. CONCLUSIONS: Definitive RIT with nivolumab and ipilimumab has sufficient clinical activity to support further development. Early changes in circulating biomarkers appear able to predict treatment outcomes as well as ensuing in-field soft tissue ulceration. TRIAL REGISTRATION NUMBER: NCT03162731

    The Somatic Genomic Landscape of Glioblastoma

    Get PDF
    We describe the landscape of somatic genomic alterations based on multi-dimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer
    corecore