665 research outputs found

    High-temperature superconductivity

    Full text link

    The Superconducting Transition Temperatures of Fe1+xSe1--y, Fe1+xSe1--yTey and (K/Rb/Cs)zFe2--xSe2

    Full text link
    In a recent contribution to this journal, it was shown that the transition temperatures of optimal high-Tc compounds obey the algebraic relation, Tc0 = kB-1{\beta}/\ell{\zeta}, where \ell is related to the mean spacing between interacting charges in the layers, {\zeta} is the distance between interacting electronic layers, {\beta} is a universal constant and kB is Boltzmann's constant. The equation was derived assuming pairing based on interlayer Coulomb interactions between physically separated charges. This theory was initially validated for 31 compounds from five different high-Tc families (within an accuracy of \pm1.37 K). Herein we report the addition of Fe1+xSe1-y and Fe1+xSe1-yTey (both optimized under pressure) and AzFe2-xSe2 (for A = K, Rb, or Cs) to the growing list of Coulomb-mediated superconducting compounds in which Tc0 is determined by the above equation. Doping in these materials is accomplished through the introduction of excess Fe and/or Se deficiency, or a combination of alkali metal and Fe vacancies. Consequently, a very small number of vacancies or interstitials can induce a superconducting state with a substantial transition temperature. The confirmation of the above equation for these Se-based Fe chalcogenides increases to six the number of superconducting families for which the transition temperature can be accurately predicted.Comment: 16 pages, 54 references 3 figures 1 tabl

    Theory of High-Tc Superconductivity: Accurate Predictions of Tc

    Full text link
    The superconducting transition temperatures of high-Tc compounds based on copper, iron, ruthenium and certain organic molecules are discovered to be dependent on bond lengths, ionic valences, and Coulomb coupling between electronic bands in adjacent, spatially separated layers [1]. Optimal transition temperature, denoted as T_c0, is given by the universal expression kBTc0=e2Λ/ℓζk_BT_c0 = e^2 \Lambda / \ell\zeta; ℓ\ell is the spacing between interacting charges within the layers, \zeta is the distance between interacting layers and \Lambda is a universal constant, equal to about twice the reduced electron Compton wavelength (suggesting that Compton scattering plays a role in pairing). Non-optimum compounds in which sample degradation is evident typically exhibit Tc < T_c0. For the 31+ optimum compounds tested, the theoretical and experimental T_c0 agree statistically to within +/- 1.4 K. The elemental high Tc building block comprises two adjacent and spatially separated charge layers; the factor e^2/\zeta arises from Coulomb forces between them. The theoretical charge structure representing a room-temperature superconductor is also presented.Comment: 7 pages 5 references, 6 figures 1 tabl

    Poincare Semigroup Symmetry as an Emergent Property of Unstable Systems

    Full text link
    The notion that elementary systems correspond to irreducible representations of the Poincare group is the starting point for this paper, which then goes on to discuss how a semigroup for the time evolution of unstable states and resonances could emerge from the underlying Poincare symmetry. Important tools in this analysis are the Clebsch-Gordan coefficients for the Poincare group.Comment: 17 pages, 1 figur

    About the maximal rank of 3-tensors over the real and the complex number field

    Full text link
    High dimensional array data, tensor data, is becoming important in recent days. Then maximal rank of tensors is important in theory and applications. In this paper we consider the maximal rank of 3 tensors. It can be attacked from various viewpoints, however, we trace the method of Atkinson-Stephens(1979) and Atkinson-Lloyd(1980). They treated the problem in the complex field, and we will present various bounds over the real field by proving several lemmas and propositions, which is real counterparts of their results.Comment: 13 pages, no figure v2: correction and improvemen

    Understanding entangled spins in QED

    Full text link
    The stability of two entangled spins dressed by electrons is studied by calculating the scattering phase shifts. The interaction between electrons is interpreted by fully relativistic QED and the screening effect is described phenomenologically in the Debye exponential form e−αre^{-\alpha r}. Our results show that if the (Einstein-Podolsky-Rosen-) EPR-type states are kept stable under the interaction of QED, the spatial wave function must be parity-dependent. The spin-singlet state s=0s=0 and the polarized state 12(∣+−>−∣−+>)\frac 1{\sqrt{2}}(\mid +-> -\mid -+>) along the z-axis\QTR{bf}{\}give rise to two different kinds of phase shifts\QTR{bf}{.} Interestingly, the interaction between electrons in the spin-singlet pair is found to be attractive. Such an attraction could be very useful when we extract the entangled spins from superconductors. A mechanism to filter the entangled spins is also discussed.Comment: 6 pages, 3 figures. changes adde
    • …
    corecore