9 research outputs found

    Continuation and stability deduction of resonant periodic orbits in three dimensional systems

    Full text link
    In dynamical systems of few degrees of freedom, periodic solutions consist the backbone of the phase space and the determination and computation of their stability is crucial for understanding the global dynamics. In this paper we study the classical three body problem in three dimensions and use its dynamics to assess the long-term evolution of extrasolar systems. We compute periodic orbits, which correspond to exact resonant motion, and determine their linear stability. By computing maps of dynamical stability we show that stable periodic orbits are surrounded in phase space with regular motion even in systems with more than two degrees of freedom, while chaos is apparent close to unstable ones. Therefore, families of stable periodic orbits, indeed, consist backbones of the stability domains in phase space.Comment: Proceedings of the 6th International Conference on Numerical Analysis (NumAn 2014). Published by the Applied Mathematics and Computers Lab, Technical University of Crete (AMCL/TUC), Greec

    Multi-Planet Destabilisation and Escape in Post-Main Sequence Systems

    Full text link
    Discoveries of exoplanets orbiting evolved stars motivate critical examinations of the dynamics of NN-body systems with mass loss. Multi-planet evolved systems are particularly complex because of the mutual interactions between the planets. Here, we study the underlying dynamical mechanisms which can incite planetary escape in two-planet post-main sequence systems. Stellar mass loss alone is unlikely to be rapid and high enough to eject planets at typically-observed separations. However, the combination of mass loss and planet-planet interactions can prompt a shift from stable to chaotic regions of phase space. Consequently, when mass loss ceases, the unstable configuration may cause escape. By assuming a constant stellar mass loss rate, we utilize maps of dynamical stability to illustrate the distribution of regular and chaotic trajectories in phase space. We show that chaos can drive the planets to undergo close encounters, leading to the ejection of one planet. Stellar mass loss can trigger the transition of a planetary system from a stable to chaotic configuration, subsequently causing escape. We find that mass loss non-adiabatically affects planet-planet interaction for the most massive progenitor stars which avoid the supernova stage. For these cases, we present specific examples of planetary escape.Comment: Accepted for publication in MNRAS (2013

    Interaction of free-floating planets with a star-planet pair

    Full text link
    The recent discovery of free-floating planets and their theoretical interpretation as celestial bodies, either condensed independently or ejected from parent stars in tight clusters, introduced an intriguing possibility. Namely, that some exoplanets are not condensed from the protoplanetary disk of their parent star. In this novel scenario a free-floating planet interacts with an already existing planetary system, created in a tight cluster, and is captured as a new planet. In the present work we study this interaction process by integrating trajectories of planet-sized bodies, which encounter a binary system consisting of a Jupiter-sized planet revolving around a Sun-like star. To simplify the problem we assume coplanar orbits for the bound and the free-floating planet and an initially parabolic orbit for the free-floating planet. By calculating the uncertainty exponent, a quantity that measures the dependence of the final state of the system on small changes of the initial conditions, we show that the interaction process is a fractal classical scattering. The uncertainty exponent is in the range (0.2-0.3) and is a decreasing function of time. In this way we see that the statistical approach we follow to tackle the problem is justified. The possible final outcomes of this interaction are only four, namely flyby, planet exchange, capture or disruption. We give the probability of each outcome as a function of the incoming planet's mass. We find that the probability of exchange or capture (in prograde as well as retrograde orbits and for very long times) is non-negligible, a fact that might explain the possible future observations of planetary systems with orbits that are either retrograde or tight and highly eccentric.Comment: 19 pages, 12 figure

    History and evolution of concepts in physics

    No full text
    Our understanding of nature, and in particular of physics and the laws governing it, has changed radically since the days of the ancient Greek natural philosophers. This book explains how and why these changes occurred, through landmark experiments as well as theories that - for their time - were revolutionary. The presentation covers Mechanics, Optics, Electromagnetism, Thermodynamics, Relativity Theory, Atomic Physics and Quantum Physics. The book places emphasis on ideas and on a qualitative presentation, rather than on mathematics and equations. Thus, although primarily addressed to those who are studying or have studied science, it can also be read by non-specialists. The author concludes with a discussion of the evolution and organization of universities, from ancient times until today, and of the organization and dissemination of knowledge through scientific publications and conferences

    History and Evolution of Concepts in Physics

    No full text
    Our understanding of nature, and in particular of physics and the laws governing it, has changed radically since the days of the ancient Greek natural philosophers. This book explains how and why these changes occurred, through landmark experiments as well as theories that - for their time - were revolutionary. The presentation covers Mechanics, Optics, Electromagnetism, Thermodynamics, Relativity Theory, Atomic Physics and Quantum Physics. The book places emphasis on ideas and on a qualitative presentation, rather than on mathematics and equations. Thus, although primarily addressed to those who are studying or have studied science, it can also be read by non-specialists. The author concludes with a discussion of the evolution and organization of universities, from ancient times until today, and of the organization and dissemination of knowledge through scientific publications and conferences
    corecore