2 research outputs found

    Strength parameter selection framework for evaluating the design life of clay cut slopes

    No full text
    Design of engineered earthworks is predominately conducted through limit equilibrium analysis requiring strain independent strength criteria. Previous studies for deep-seated first-time failures within over-consolidated clay cut slopes have proposed the use of fully softened strength parameters for design. A study investigating shallow first-time failures in clay cut slopes due to seasonal stress cycles has been undertaken using a validated numerical model capable of capturing seasonal ratcheting and progressive failure. It is shown that fully softened strength criteria are inappropriate for the assessment of shallow first-time failures due to seasonal ratcheting and that slopes at angles between the material’s fully softened and residual friction angle may be at risk of failure in the future due to this behaviour. However, adopting residual strength parameters will likely result in overly conservative solutions considering the required design life of geotechnical assets. It is shown that the strain softening behaviour of clay defines the rate of strength deterioration and the operational life of engineered slopes. While general guidelines for analysis considering shallow first-time failures in clay cut slopes are made, detailed understanding of a material’s strain-softening behaviour, the magnitude and rate of strength reduction with strains, is needed to establish strength criteria for limit equilibrium analysis

    Forecasting the long-term deterioration of a cut slope in high-plasticity clay using a numerical model

    No full text
    This paper details development of a numerical modelling approach that has been employed to forecast the longterm performance of a cut slope formed in high plasticity clay. It links hydrological and mechanical behaviour in a coupled saturated and unsaturated model. This is used to investigate the influence of combined dissipation of excavation-generated excess pore water pressures and seasonal weather-driven near-surface cyclic pore water pressures. Deterioration of slope performance is defined in terms of both slope deformations (i.e. service) and factor of safety against shear failure (i.e. safety). Uniquely, the modelling approach has been validated using 16 years of measured pore water pressure data from multiple locations in a London Clay cut slope. Slope deterioration was shown to be a function of both construction-induced pore water pressure dissipation and seasonal weather-driven pore water pressure cycles. These lead to both transient and permanent changes in factor of safety due to effective stress variation and mobilisation of post-peak strength reduction over time, respectively, ultimately causing shallow first-time progressive failure. It is demonstrated that this long-term (90 year) deterioration in slope performance is governed by the hydrological processes in the weathered near surface soil zone that forms following slope excavation
    corecore