1,036 research outputs found

    Integrating Technical and Nontechnical Skills in Hands-On Surgical Training

    Get PDF
    Safe and effective surgery requires high-quality technical and nontechnical skills. Although the importance of nontechnical skills has become increasingly clear, today’s surgical curricula still lack formal training in nontechnical skills. In this chapter, we discuss how to integrate technical and nontechnical skills training into surgical curricula and provide strategies on how to teach both skill sets concurrently in a hands-on setting

    Optical angle and visuospatial ability affect basic laparoscopic simulator task performance

    Get PDF
    Surgical trainees show decreased performance during laparoscopic surgery when the laparoscope (camera) is not aligned with their line of sight towards the operating area. In this study we investigate the influence of visuospatial ability on laparoscopic simulator performance under such non-zero optical angles. Novices were invited to participate in a laparoscopic training session. After completing a visuospatial ability assessment, they performed a simplified laparoscopic task on an in-house developed laparoscopic simulator under eight different optical angles ranging between 0° and 315° in steps of 45°. Data-analysis showed decreased performance under all non-zero optical angles for task duration (mean difference between 1506 and 5049 ms, standard error between 499 and 507, p &lt; .05) and for accuracy under optical angles greater than ±45° (mean difference between 1.48 and 2.11, standard error 0.32, p &lt; .01). Performance-zones were identified for various optical angle ranges and differed for task duration and accuracy. Participants of high visuospatial ability performed significantly better under non-zero angles for accuracy compared to participants of low visuospatial ability (mean difference 0.95, standard error 0.34, p &lt; .01), except for the 180° optical angle (no difference).</p

    Clinical Value of Multiomics-Based Biomarker Signatures in Inflammatory Bowel Diseases:Challenges and Opportunities

    Get PDF
    Inflammatory bowel diseases (IBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), are complex and heterogeneous diseases characterized by a multifactorial etiology, therefore demanding a multimodal approach to disentangle the main pathophysiological components driving disease onset and progression. Adoption of a systems biology approach is increasingly advocated with the advent of multi-omics profiling technologies, aiming to improve disease classification, to identify disease biomarkers and to accelerate drug discovery for patients with IBD. However, clinical translation of multi-omics-derived biomarker signatures is lagging behind, since there are several obstacles that need to be addressed in order to realize clinically useful signatures. Multi-omics integration and IBD-specific identification of molecular networks, standardization and clearly defined outcomes, strategies to tackle cohort heterogeneity, and external validation of multi-omics-based signatures are critical aspects. While striving for personalized medicine in IBD, careful consideration of these aspects is however needed to adequately match biomarker targets (e.g. the gut microbiome, immunity or oxidative stress) with their corresponding utilities (e.g. early disease detection, endoscopic and clinical outcome). Theory-driven disease classifications and predictions are still governing clinical practice, while this could be improved by adopting an unbiased, data-driven approach relying on molecular data structures integrated with patient and disease characteristics. In the foreseeable future, the main challenge will lie in the complexity and impracticality of implementing multi-omics-based signatures into clinical practice. Still, this could be achieved by developing easy-to-use, robust and cost-effective tools incorporating omics-derived predictive signatures and through the design and execution of prospective, longitudinal, biomarker-stratified clinical trials

    Development of a Multimodal, Personalized Intervention of Virtual Reality Integrated Within Physiotherapy for Patients With Complex Chronic Low-Back Pain

    Get PDF
    Background: Chronic low-back pain (CLBP) is the leading cause of years lived with disability. Physiotherapy is the most common treatment option for CLBP, but effects are often unsatisfactory. Virtual reality (VR) offers possibilities to enhance the effectiveness of physiotherapy treatment. Primary aim was to develop and test a personalized VR intervention integrated within a physiotherapy treatment for patients with CLBP.Methods: This study describes an intervention development process using mixed methods design that followed the Medical Research Council (MRC) framework. This involved a cocreation process with patients, physiotherapists, and researchers. A draft intervention was constructed based on a literature review and focus groups, and subsequently tested in a feasibility study and evaluated in focus groups. Focus group data were analyzed using thematic analysis. This intervention development process resulted in a final intervention.Results: Focus group data showed that VR and physiotherapy can strengthen each other when they are well integrated, and that VR needs to be administered under the right conditions including flawless technology, physiotherapists with sufficient affinity and training, and the right expectations from patients. The draft intervention was considered feasible after evaluation by four patients and three physiotherapists and was further complemented by expanding the training for physiotherapists and improving the protocols for physiotherapists and patients. The final intervention consisted of a 12-week physiotherapy treatment with three integrated VR modules: pain education, physical exercise, and relaxation.Conclusion: Using the MRC framework in cocreation with the end users, a personalized VR intervention integrated within a physiotherapy treatment for patients with CLBP was developed. This intervention was found to be feasible and will subsequently be evaluated for (cost-)effectiveness in a cluster randomized controlled trial

    Spatiotemporal regulation of hydrogen sulfide signaling in the kidney

    Get PDF
    Hydrogen sulfide (H2S) has long been recognized as a putrid, toxic gas. However, as a result of intensive biochemical research in the past two decades, H2S is now considered to be the third gasotransmitter alongside nitric oxide (NO) and carbon monoxide (CO) in mammalian systems. H2S-producing enzymes are expressed in all organs, playing an important role in their physiology. In the kidney, H2S is a critical regulator of vascular and cellular function, although the mechanisms that affect (sub)cellular levels of H2S are not precisely understood. H2S modulates systemic and renal blood flow, glomerular filtration rate and the renin-angiotensin axis through direct inhibition of nitric oxide synthesis. Further, H2S affects cellular function by modulating protein activity via post-translational protein modification: a process termed persulfidation. Persulfidation modulates protein activity, protein localization and protein-protein interactions. Additionally, acute kidney injury (AKI) due to mitochondrial dysfunction, which occurs during hypoxia or ischemia-reperfusion (IR), is attenuated by H2S. H2S enhances ATP production, prevents damage due to free radicals and regulates endoplasmic reticulum stress during IR. In this review, we discuss current insights in the (sub)cellular regulation of H2S anabolism, retention and catabolism, with relevance to spatiotemporal regulation of renal H2S levels. Together, H2S is a versatile gasotransmitter with pleiotropic effects on renal function and offers protection against AKI. Unraveling the mechanisms that modulate (sub)cellular signaling of H2S not only expands fundamental insight in the regulation of functional effects mediated by H2S, but can also provide novel therapeutic targets to prevent kidney injury due to hypoxic or ischemic injury

    Adhesive Small Bowel Obstruction in the Minimally Invasive Era

    Get PDF
    Roughly 60% of all cases of small bowel obstruction are caused by adhesions. Adhesions are a form of internal scar tissue, which develop in over 45–93% of patients who undergo abdominal surgery. With this relatively high incidence, the population at risk for adhesive small bowel obstruction (ASBO) is enormous. Minimally invasive surgery reduces surgical wound surface and thus holds promise to reduce adhesion formation. The use of minimally invasive techniques results in a 50% reduction of adhesion formation as compared to open surgery. However, since ASBO can be caused by just a single adhesive band, it is uncertain whether a reduction in adhesion formation will also lead to a proportional decrease in the incidence of ASBO. Minimally invasive surgery might also improve operative treatment of ASBO, accelerating gastro-intestinal recovery time and lowering the risk of recurrent ASBO associated with adhesion reformation. We will discuss recent evidence on the impact of minimally invasive surgery on the incidence of ASBO and the role of minimally invasive surgery to resolve ASBO. Finally, we will debate additional measures, such as the use of adhesion barriers, to prevent adhesion formation and adhesion-related morbidity in the minimally invasive era
    • …
    corecore