96 research outputs found
Mammalian cell-driven polymerisation of pyrrole
A model cancer cell line was used to initiate polymerisation of pyrrole to form the conducting material polypyrrole. The polymerisation was shown to occur via cytosolic exudates rather than via membrane redox sites which normally control the oxidation state of iron as ferricyanide or ferrocyanide.. The data demonstrate for the first time that mammalian cells can be used to initiate synthesis of conducting polymers, and suggest a possible route to detection of cell damage and/or transcellular processes via an inâsitu and amplifiable signal generation
An electrochemical system for the study of trans-plasma membrane electron transport in whole eukaryotic cells
The development of new assays to study trans-plasma membrane electron transport (tPMET) in eukaryotic systems is paramount for a number reasons, which include the further understanding of the underlying biology which can then potentially be applied to innovate technological advancements in biosensing, microbial fuel, and pharmaceutical fields. The current literature provides methodology to study these systems that hinges upon mitochondrial knockout genotypes, or the detection of ferrocyanide using colorimetric methods. Developing a method to simultaneously analyze the redox state of a reporter molecule would give advantages in probing the underlying biology. Herein we present an electrochemical based method that allows for the quantification of both ferricyanide and ferrocyanide redox states to a highly sensitive degree. We have applied this system to a novel application of assessing oncogenic cell-driven iron reduction, and have shown that it can effectively quantitate and identify differences in iron reduction capability of three lung epithelial cell lines. Importantly, the development of the technology has led to new biological hypothesis which now need addressing
An electrochemical system for the study of trans-plasma membrane electron transport in whole eukaryotic cells
The development of new assays to study trans-plasma membrane electron transport (tPMET) in eukaryotic systems is paramount for a number reasons, which include the further understanding of the underlying biology which can then potentially be applied to innovate technological advancements in biosensing, microbial fuel, and pharmaceutical fields. The current literature provides methodology to study these systems that hinges upon mitochondrial knockout genotypes, or the detection of ferrocyanide using colorimetric methods. Developing a method to simultaneously analyze the redox state of a reporter molecule would give advantages in probing the underlying biology. Herein we present an electrochemical based method that allows for the quantification of both ferricyanide and ferrocyanide redox states to a highly sensitive degree. We have applied this system to a novel application of assessing oncogenic cell-driven iron reduction, and have shown that it can effectively quantitate and identify differences in iron reduction capability of three lung epithelial cell lines. Importantly, the development of the technology has led to new biological hypothesis which now need addressing
Mechanistic insight into heterogeneity of trans-plasma membrane electron transport in cancer cell types
Trans-plasma membrane electron transfer (tMPET) is a process by which reducing equivalents, either electrons or reductants like ascorbic acid, are exported to the extracellular environment by the cell. TPMET is involved in a number of physiological process and has been hypothesised to play a role in the redox regulation of cancer metabolism. Here, we use a new electrochemical assay to elucidate the âpreferenceâ of cancer cells for different trans tPMET systems. This aids in proving a biochemical framework for the understanding of tPMET role, and for the development of novel tPMET-targeting therapeutics. We have delineated the mechanism of tPMET in 3 lung cancer cell models to show that the external electron transfer is orchestrated by ascorbate mediated shuttling via tPMET. In addition, the cells employ a different, non-shuttling-based mechanism based on direct electron transfer via Dcytb. Results from our investigations indicate that tPMETs are used differently, depending on the cell type. The data generated indicates that tPMETs may play a fundamental role in facilitation of energy reprogramming in malignant cells, whereby tPMETs are utilised to supply the necessary energy requirement when mitochondrial stress occurs. Our findings instruct a deeper understanding of tPMET systems, and show how different cancer cells may preferentially use distinguishable tPMET systems for cellular electron transfer processes
New Perspectives on Iron Uptake in Eukaryotes
All eukaryotic organisms require iron to function. Malfunctions within iron homeostasis have a range of physiological consequences, and can lead to the development of pathological conditions that can result in an excess of non-transferrin bound iron (NTBI). Despite extensive understanding of iron homeostasis, the links between the âmacroscopicâ transport of iron across biological barriers (cellular membranes) and the chemistry of redox changes that drive these processes still needs elucidating. This review draws conclusions from the current literature, and describes some of the underlying biophysical and biochemical processes that occur in iron homeostasis. By first taking a broad view of iron uptake within the gut and subsequent delivery to tissues, in addition to describing the transferrin and non-transferrin mediated components of these processes, we provide a base of knowledge from which we further explore NTBI uptake. We provide concise up-to-date information of the transplasma electron transport systems (tPMETSs) involved within NTBI uptake, and highlight how these systems are not only involved within NTBI uptake for detoxification but also may play a role within the reduction of metabolic stress through regeneration of intracellular NAD(P)H/NAD(P)+ levels. Furthermore, we illuminate the thermodynamics that governs iron transport, namely the redox potential cascade and electrochemical behavior of key components of the electron transport systems that facilitate the movement of electrons across the plasma membrane to the extracellular compartment. We also take account of kinetic changes that occur to transport iron into the cell, namely membrane dipole change and their consequent effects within membrane structure that act to facilitate transport of ions
Prognosis of Differentiated Thyroid Cancer in Relation to Serum Thyrotropin and Thyroglobulin Antibody Status at Time of Diagnosis
BACKGROUND: Serum thyrotropin (TSH) concentration and thyroid autoimmunity may be of prognostic importance in differentiated thyroid cancer (DTC). Preoperative serum TSH level has been associated with higher DTC stage in cross-sectional studies; data are contradictory on the significance of thyroid autoimmunity at the time of diagnosis.
OBJECTIVE: We sought to assess whether preoperative serum TSH and perioperative antithyroglobulin antibodies (TgAb) were associated with thyroid cancer stage and outcome in DTC patients followed by the National Thyroid Cancer Treatment Cooperative Study, a large multicenter thyroid cancer registry.
METHODS: Patients registered after 1996 with available preoperative serum TSH (n=617; the TSH cohort) or perioperative TgAb status (n=1770; the TgAb cohort) were analyzed for tumor stage, persistent disease, recurrence, and overall survival (OS; median follow-up, 5.5 years). Parametric tests assessed log-transformed TSH, and categorical variables were tested with chi square. Disease-free survival (DFS) and OS was assessed with Cox models.
RESULTS: Geometric mean serum TSH levels were higher in patients with higher-stage disease (Stage III/IV=1.48 vs. 1.02âmU/L for Stages I/II; p=0.006). The relationship persisted in those aged â„45 years after adjusting for sex (p=0.01). Gross extrathyroidal extension (p=0.03) and presence of cervical lymph node metastases (p=0.003) were also significantly associated with higher serum TSH. Disease recurrence and all-cause mortality occurred in 37 and 38 TSH cohort patients respectively, which limited the power for survival analysis. Positive TgAb was associated with lower stage on univariate analysis (positive TgAb in 23.4% vs. 17.8% of Stage I/II vs. III/IV patients, respectively; p=0.01), although the relationship lost significance when adjusting for age and sex (p=0.34). Perioperative TgAb was not an independent predictor of DFS (hazard ratio=1.12 [95% confidence interval=0.74-1.69]) or OS (hazard ratio=0.98 [95% confidence interval=0.56-1.72]).
CONCLUSIONS: Preoperative serum TSH level is associated with higher DTC stage, gross extrathyroidal extension, and neck node metastases. Perioperative TgAb is not an independent predictor of DTC prognosis. A larger cohort is required to assess whether preoperative serum TSH level predicts recurrence or mortality
Le FORUM, Vol. 35 No. 4
https://digitalcommons.library.umaine.edu/francoamericain_forum/1032/thumbnail.jp
Recommended from our members
The reactive species interactome: evolutionary emergence, biological significance, and opportunities for redox metabolomics and personalized medicine
SIGNIFICANCE: Oxidative stress is thought to account for aberrant redox homeostasis and contribute to aging and disease. However, more often than not administration of antioxidants is ineffective, suggesting our current understanding of the underlying regulatory processes is incomplete. Recent Advances. Similar to reactive oxygen and nitrogen species (ROS, RNS), reactive sulfur species (RSS) are now emerging as important signaling molecules, targeting regulatory cysteine redox switches in proteins, affecting gene regulation, ion transport, intermediary metabolism and mitochondrial function. To rationalize the complexity of chemical interactions of reactive species with themselves and their targets and help define their role in systemic metabolic control, we here introduce a novel integrative concept coined the reactive species interactome (RSI). The RSI is a primeval multi-level redox-regulatory system whose architecture, together with the physicochemical characteristics of its constituents, allows efficient sensing and rapid adaptation to environmental changes and various other stresses to enhance fitness and resilience at the local and whole-organism level.
CRITICAL ISSUES: To better characterise the RSI-related processes that determine fluxes through specific pathways and enable integration, it is necessary to disentangle the chemical biology and activity of reactive species (including precursors and reaction products), their targets, communication systems and effects on cellular, organ and whole-organism bioenergetics using systems-level/network analyses.
FUTURE DIRECTIONS: Understanding the mechanisms through which the RSI operates will enable a better appreciation of the possibilities to modulate the entire biological system; moreover, unveiling molecular signatures that characterize specific environmental challenges or other stresses will provide new prevention/intervention opportunities for personalized medicine
Ultra-stable optical clock with two cold-atom ensembles
Atomic clocks based on optical transitions are the most stable, and therefore
precise, timekeepers available. These clocks operate by alternating intervals
of atomic interrogation with dead time required for quantum state preparation
and readout. This non-continuous interrogation of the atom system results in
the Dick effect, an aliasing of frequency noise of the laser interrogating the
atomic transition. Despite recent advances in optical clock stability achieved
by improving laser coherence, the Dick effect has continually limited optical
clock performance. Here we implement a robust solution to overcome this
limitation: a zero-dead-time optical clock based on the interleaved
interrogation of two cold-atom ensembles. This clock exhibits vanishingly small
Dick noise, thereby achieving an unprecedented fractional frequency instability
of for an averaging time in seconds.
We also consider alternate dual-atom-ensemble schemes to extend laser coherence
and reduce the standard quantum limit of clock stability, achieving a
spectroscopy line quality factor
A Human Minor Histocompatibility Antigen Specific for B Cell Acute Lymphoblastic Leukemia
Human minor histocompatibility antigens (mHags) play an important role in the induction of cytotoxic T lymphocyte (CTL) reactivity against leukemia after human histocompatibility leukocyte antigen (HLA)-identical allogeneic bone marrow transplantation (BMT). As most mHags are not leukemia specific but are also expressed by normal tissues, antileukemia reactivity is often associated with life-threatening graft-versus-host disease (GVHD). Here, we describe a novel mHag, HB-1, that elicits donor-derived CTL reactivity in a B cell acute lymphoblastic leukemia (B-ALL) patient treated by HLA-matched BMT. We identified the gene encoding the antigenic peptide recognized by HB-1âspecific CTLs. Interestingly, expression of the HB-1 gene was only observed in B-ALL cells and Epstein-Barr virusâtransformed B cells. The HB-1 geneâencoded peptide EEKRGSLHVW is recognized by the CTL in association with HLA-B44. Further analysis reveals that a polymorphism in the HB-1 gene generates a single amino acid exchange from His to Tyr at position 8 within this peptide. This amino acid substitution is critical for recognition by HB-1âspecific CTLs. The restricted expression of the polymorphic HB-1 Ag by B-ALL cells and the ability to generate HB-1âspecific CTLs in vitro using peptide-loaded dendritic cells offer novel opportunities to specifically target the immune system against B-ALL without the risk of evoking GVHD
- âŠ