156 research outputs found

    Apolipoprotein B100 autoimmunity and atherosclerosis - disease mechanisms and therapeutic potential.

    Get PDF
    PURPOSE OF REVIEW: Adaptive immune responses have been shown to play an important role in the atherosclerotic disease process and both pathogenic and protective immunity has been identified. Apolipoprotein (apo) B100 appears to be a key antigen and novel therapies modulating immune responses against apo B100 have shown promising results in experimental models. This review will discuss recent developments in the mechanistic understanding of apo B100 autoimmunity and approaches taken to use this knowledge for development of novel therapies. RECENT FINDINGS: It has recently been shown that not only apo B100 modified by oxidation but also nonmodified apo B100 is targeted by autoimmune responses. This implies that a corresponding set of regulatory T cells with the same antigen specificity must exist and that these cells under normal circumstances are able to prevent autoimmunity against LDL. Recent studies also suggest that the atheroprotective effect of apo B100 peptide immunization acts by re-enforcing the activity of such cells. SUMMARY: These novel findings suggest that aggravation of plaque inflammation may occur as a result of a local loss of tolerance against LDL in the plaque due to insufficient activity of regulatory T cells. Restoration of lost tolerance represents an interesting novel approach for treatment of cardiovascular disease

    Emerging biomarkers and intervention targets for immune-modulation of atherosclerosis - A review of the experimental evidence.

    Get PDF
    The role of inflammation in atherosclerosis and plaque vulnerability is well recognized. However, it is only during recent years it has become evident that this inflammation is modulated by immune responses against plaque antigens such as oxidized LDL. Interestingly, both protective and pathogenic immune responses exist and experimental data from animal studies suggest that modulation of these immune responses represents a promising new target for treatment of cardiovascular disease. It has been proposed that during early stages of the disease, autoimmune responses against plaque antigens are controlled by regulatory T cells that inhibit the activity of auto-reactive Th1 effector T cells by release of anti-inflammatory cytokines such as IL-10 and TGF-β. As the disease progresses this control is gradually lost and immune responses towards plaque antigens switch towards activation of Th1 effector T cells and release of pro-inflammatory cytokines such as interferon-γ, TNF-α and IL-1β. Several novel immune-modulatory therapies that promote or mimic tolerogenic immune responses against plaque antigens have demonstrated athero-protective effects in experimental models and a first generation of such immune-modulatory therapies are now in early or about to enter into clinical testing. A challenge in the clinical development of these therapies is that our knowledge of the role of the immune system in atherosclerosis largely rests on data from animal models of the disease. It is therefore critical that more attention is given to the characterization and evaluation of immune biomarkers for cardiovascular risk

    Plasma S100A8/A9 Correlates With Blood Neutrophil Counts, Traditional Risk Factors, and Cardiovascular Disease in Middle-Aged Healthy Individuals.

    Get PDF
    The S100 alarmins A8, A9, and A8/A9, secreted by activated neutrophils and monocytes/macrophages, are involved in the pathogenesis of various inflammatory diseases. S100A8/A9 has previously been linked to atherogenesis and cardiovascular (CV) disease. We investigated whether S100A8, A9, and A8/A9 correlate with carotid artery disease and CV risk in apparently healthy individuals

    CD8+ T cell activation predominate early immune responses to hypercholesterolemia in Apoe-/- mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is well established that adaptive immune responses induced by hypercholesterolemia play an important role in the development of atherosclerosis, but the pathways involved remain to be fully characterized. In the present study we assessed immune responses to hypercholesterolemia induced by feeding <it>Apoe<sup>-/- </sup></it>mice a high-fat diet for 4 or 8 weeks.</p> <p>Results</p> <p>The primary immune response in lymph nodes draining the aortic root was an increased expression of interferon (IFN)-γ in CD8<sup>+</sup>CD28<sup>+ </sup>T cells, while an activation of IFN-γ expression in CD4<sup>+ </sup>T cells was observed only after 8 weeks of high-fat diet. Contrarily, spleen CD4<sup>+ </sup>T cells responded with a higher expression of IL-10. Spleen CD8<sup>+ </sup>T cells expressed both IFN-γ and IL-10 and showed enhanced proliferation when exposed to Concanavalin A. Plasma levels of IgG and IgM against oxidized LDL did not change, but the level of apolipoprotein B/IgM immune complexes was increased.</p> <p>Conclusion</p> <p>Hypercholesterolemia leads to unopposed activation of Th1 immune responses in lymph nodes draining atherosclerotic lesions, whereas Th1 activation in the spleen is balanced by a concomitant activation of Th2 cells. The activation of CD8<sup>+ </sup>T cells implies that hypercholesterolemia is associated with formation of cell autoantigens.</p

    Detecting microRNA activity from gene expression data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions.</p> <p>Results</p> <p>Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance.</p> <p>Conclusions</p> <p>We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.</p

    Decreased levels of stem cell factor in subjects with incident coronary events.

    Get PDF
    It has been proposed that vascular progenitor cells play an important role in vascular repair, but their possible clinical importance in cardiovascular disease has not been fully characterized. Vascular endothelial growth factor A, placental growth factor and stem cell factor (SCF) are three growth factors that are important in recruiting vascular progenitor cells. In this study, we investigated the association between the plasma levels of these growth factors and incident coronary events (CEs)

    CD4(+) CD56(+) natural killer T-like cells secreting interferon-γ are associated with incident coronary events.

    Get PDF
    CD3(+) CD56(+) natural killer T (NKT)-like cells are a subset of T cells characterized by expression of NK receptors and potent antitumour activity. It has also been suggested that they have a role in autoimmune disease, and levels of NKT-like cells are elevated in patients with coronary disease

    IL-22 affects smooth muscle cell phenotype and plaque formation in apolipoprotein E knockout mice.

    Get PDF
    IL-22 is a recently discovered cytokine that belongs to the family of IL-10 related cytokines. It is produced by activated T-cells and innate lymphoid cells and has been suggested to be involved in tissue repair. As both inflammation and repair play important roles in atherosclerosis we investigated if IL-22 deficiency influences the disease process in Apoe(-/-) mice
    corecore