31 research outputs found

    Genomic modelling of the ESR1 Y537S mutation for evaluating function and new therapeutic approaches for metastatic breast cancer

    Get PDF
    Drugs that inhibit estrogen receptor-α (ER) activity have been highly successful in treating and reducing breast cancer progression in ER-positive disease. However, resistance to these therapies presents a major clinical problem. Recent genetic studies have shown that mutations in the ER gene are found in >20% of tumours that progress on endocrine therapies. Remarkably, the great majority of these mutations localize to just a few amino acids within or near the critical helix 12 region of the ER hormone binding domain, where they are likely to be single allele mutations. Understanding how these mutations impact on ER function is a prerequisite for identifying methods to treat breast cancer patients featuring such mutations. Towards this end, we used CRISPR-Cas9 genome editing to make a single allele knock-in of the most commonly mutated amino acid residue, tyrosine 537, in the estrogen-responsive MCF7 breast cancer cell line. Genomic analyses using RNA-seq and ER ChIP-seq demonstrated that the Y537S mutation promotes constitutive ER activity globally, resulting in estrogen-independent growth. MCF7-Y537S cells were resistant to the anti-estrogen tamoxifen and fulvestrant. Further, we show that the basal transcription factor TFIIH is constitutively recruited by ER-Y537S, resulting in ligand-independent phosphorylation of Serine 118 (Ser118) by the TFIIH kinase, cyclin-dependent kinase (CDK)7. The CDK7 inhibitor, THZ1 prevented Ser118 phosphorylation and inhibited growth of MCF7-Y537S cells. These studies confirm the functional importance of ER mutations in endocrine resistance, demonstrate the utility of knock-in mutational models for investigating alternative therapeutic approaches and highlight CDK7 inhibition as a potential therapy for endocrine-resistant breast cancer mediated by ER mutations

    Rapid niche expansion by selection on functional genomic variation after ecosystem recovery

    Get PDF
    It is well recognized that environmental degradation caused by human activities can result in dramatic losses of species and diversity. However, comparatively little is known about the ability of biodiversity to re-emerge following ecosystem recovery. Here, we show that a European whitefish subspecies, the gangfisch Coregonus lavaretus macrophthalmus, rapidly increased its ecologically functional diversity following the restoration of Lake Constance after anthropogenic eutrophication. In fewer than ten generations, gangfisch evolved a greater range of gill raker numbers (GRNs) to utilize a broader ecological niche. A sparse genetic architecture underlies this variation in GRN. Several co-expressed gene modules and genes showing signals of positive selection were associated with GRN and body shape. These were enriched for biological pathways related to trophic niche expansion in fishes. Our findings demonstrate the potential of functional diversity to expand following habitat restoration, given a fortuitous combination of genetic architecture, genetic diversity and selection

    Fetal Exposure to Maternal Active and Secondhand Smoking with Offspring Early-life Growth in the Healthy Start Study

    Get PDF
    Background Previous studies have modeled the association between fetal exposure to tobacco smoke and body mass index (BMI) growth trajectories, but not the timing of catch-up growth. Research on fetal exposure to maternal secondhand smoking is limited. Objectives To explore the associations between fetal exposure to maternal active and secondhand smoking with body composition at birth and BMI growth trajectories through age 3 years. Methods We followed 630 mother-child pairs enrolled in the Healthy Start cohort through age 3 years. Maternal urinary cotinine was measured at ~ 27 weeks gestation. Neonatal body composition was measured using air displacement plethysmography. Child weight and length/height were abstracted from medical records. Linear regression models examined the association between cotinine categories (no exposure, secondhand smoke, active smoking) with weight, fat mass, fat-free mass, and percent fat mass at birth. A mixed-effects regression model estimated the association between cotinine categories and BMI. Results Compared to unexposed offspring, birth weight was significantly lower among offspring born to active smokers (−343-g; 95% CI: −473, −213), but not among offspring of women exposed to secondhand smoke (−47-g; 95% CI: −130, 36). There was no significant difference in the rate of BMI growth over time between offspring of active and secondhand smokers (p = 0.58). Therefore, our final model included a single growth rate parameter for the combined exposure groups of active and secondhand smokers. The rate of BMI growth for the combined exposed group was significantly more rapid (0.27 kg/m2 per year; 95% CI: 0.05, 0.69; p \u3c 0.01) than the unexposed. Conclusions Offspring prenatally exposed to maternal active or secondhand smoking experience rapid and similar BMI growth in the first three years of life. Given the long-term consequences of rapid weight gain in early childhood, it is important to encourage pregnant women to quit smoking and limit their exposure to secondhand smoke
    corecore