47,751 research outputs found

    UK regional scale modelling of natural geohazards and climate change

    Get PDF
    For over 10 years, the British Geological Survey (BGS) has been investigating geotechnical and mineralogical factors controlling volume change behaviour of UK clay soils and mudrocks. A strong understanding of the relationship between these parameters and the clays' shrink-swell properties has been developed. More recently, partly resulting from concerns of users of this knowledge, a study of the relationships between climate change and shrink-swell behaviour over the last 30 years has been carried out. Information on subsidence insurance claims has been provided by the Association of British Insurers (ABI) and the UK Meteorological Office (UKMO) historical climate station data has also been utilised. This is being combined with the BGS's GeoSure national geohazard data, to build a preliminary GIS model to provide an understanding of the susceptibility of the Tertiary London Clay to climate change. This paper summarises the data analysis and identifies future work for model construction and refinement

    Drift rate control of a Brownian processing system

    Full text link
    A system manager dynamically controls a diffusion process Z that lives in a finite interval [0,b]. Control takes the form of a negative drift rate \theta that is chosen from a fixed set A of available values. The controlled process evolves according to the differential relationship dZ=dX-\theta(Z) dt+dL-dU, where X is a (0,\sigma) Brownian motion, and L and U are increasing processes that enforce a lower reflecting barrier at Z=0 and an upper reflecting barrier at Z=b, respectively. The cumulative cost process increases according to the differential relationship d\xi =c(\theta(Z)) dt+p dU, where c(\cdot) is a nondecreasing cost of control and p>0 is a penalty rate associated with displacement at the upper boundary. The objective is to minimize long-run average cost. This problem is solved explicitly, which allows one to also solve the following, essentially equivalent formulation: minimize the long-run average cost of control subject to an upper bound constraint on the average rate at which U increases. The two special problem features that allow an explicit solution are the use of a long-run average cost criterion, as opposed to a discounted cost criterion, and the lack of state-related costs other than boundary displacement penalties. The application of this theory to power control in wireless communication is discussed.Comment: Published at http://dx.doi.org/10.1214/105051604000000855 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A NuSTAR observation of the fast symbiotic nova V745 Sco in outburst

    Get PDF
    The fast recurrent nova V745 Sco was observed in the 3-79 keV X-rays band with NuSTAR 10 days after the optical discovery. The measured X-ray emission is consistent with a collisionally ionized optically thin plasma at temperature of about 2.7 keV. A prominent iron line observed at 6.7 keV does not require enhanced iron in the ejecta. We attribute the X-ray flux to shocked circumstellar material. No X-ray emission was observed at energies above 20 keV, and the flux in the 3-20 keV range was about 1.6 ×\times 10−11^{-11} erg cm−2^{-2} s−1^{-1}. The emission measure indicates an average electron density of order of 107^7 cm−3^{-3}. The X-ray flux in the 0.3-10 keV band almost simultaneously measured with Swift was about 40 times larger, mainly due to the luminous central supersoft source emitting at energy below 1 keV. The fact that the NuSTAR spectrum cannot be fitted with a power law, and the lack of hard X-ray emission, allow us to rule out Comptonized gamma rays, and to place an upper limit of the order of 10−11^{-11} erg cm−2^{-2} s−1^{-1} on the gamma-ray flux of the nova on the tenth day of the outburst.Comment: in press in Monthly Notices of the Royal Astronomical Society, 201

    A linear acoustic model for multi-cylinder IC engine intake manifolds including the effects of the intake throttle

    Get PDF
    This paper presents a linear acoustic model of a multi-cylinder intake manifold that can be used as part of a hybrid time/frequency domain method to calculate the intake wave dynamics of practical naturally aspirated engines. The method allows the user to construct a model of almost any manifold of complex geometry. The model is constructed as an assemblage of sub-models: (i) A model for a straight pipe with both ends open and through-flow. (ii) A model for an expansion chamber consisting of three lengths of pipe laid end-to-end: a narrow bore pipe expanding into a wide bore pipe contracting into a narrower bore pipe once more. (iii) A model of a side-branch, which includes a model for a straight pipe with one end closed and a model for the three way junction that joins the side-branch to a length of flow pipe. (iv) A model for an expansion with two (or more) side-branches, which combines the sub-models (i, ii, iii) into a multi-way (n-way) junction model. (v) A model for an intake throttle. Good agreement with measurement has been found for each sub-model when bench-tested in isolation and encouraging agreement has been found when many sub-models are used together to model a complex intake manifold on a running engine

    SO(3) Gauge Symmetry and Nearly Tri-bimaximal Neutrino Mixing

    Full text link
    In this note I mainly focus on the neutrino physics part in my talk and report the most recent progress made in \cite{YLW0}. It is seen that the Majorana features of neutrinos and SO(3) gauge flavor symmetry can simultaneously explain the smallness of neutrino masses and nearly tri-bimaximal neutrino mixing when combining together with the mechanism of approximate global U(1) family symmetry. The mixing angle θ13\theta_{13} and CP-violating phase are in general nonzero and testable experimentally at the allowed sensitivity. The model also predicts the existence of vector-like Majorana neutrinos and charged leptons as well as new Higgs bosons, some of them can be light and explored at the LHC and ILC.Comment: 8 pages, invited talk, contribute to the Proceedings of the 4th International Conference on Flavor Physics (ICFP2007

    Effect of strain on the orbital and magnetic ordering of manganite thin films and their interface with an insulator

    Full text link
    We study the effect of uniform uniaxial strain on the ground state electronic configuration of a thin film manganite. Our model Hamiltonian includes the double-exchange, the Jahn-Teller electron-lattice coupling, and the antiferromagnetic superexchange. The strain arises due to the lattice mismatch between an insulating substrate and a manganite which produces a tetragonal distortion. This is included in the model via a modification of the hopping amplitude and the introduction of an energy splitting between the Mn e_g levels. We analyze the bulk properties of half-doped manganites and the electronic reconstruction at the interface between a ferromagnetic and metallic manganite and the insulating substrate. The strain drives an orbital selection modifying the electronic properties and the magnetic ordering of manganites and their interfaces.Comment: 8 pages, 8 figure

    Absorption characteristics of a quantum dot array induced intermediate band: implications for solar cell design

    Get PDF
    We present a theoretical study of the electronic and absorption properties of the intermediate band (IB) formed by a three dimensional structure of InAs/GaAs quantum dots (QDs) arranged in a periodic array. Analysis of the electronic and absorption structures suggests that the most promising design for an IB solar cell material, which will exhibit its own quasi-Fermi level, is to employ small QDs (~6–12 nm QD lateral size). The use of larger QDs leads to extension of the absorption spectra into a longer wavelength region but does not provide a separate IB in the forbidden energy gap

    Dynamic charge inhomogenity in cuprate superconductors

    Full text link
    The inelastic x-ray scattering spectrum for phonons of Δ1\Delta_{1}-symmetry including the CuO bond-stretching phonon dispersion is analyzed by a Lorentz fit in HgBa2_{2}CuO4_{4} and Bi2_{2}Sr2_{2}CuO6_{6}, respectively, using recently calculated phonon frequencies as input parameters. The resulting mode frequencies of the fit are almost all in good agreement with the calculated data. An exception is the second highest Δ1\Delta_{1}-branch compromising the bond-stretching modes which disagrees in both compounds with the calculations. This branch unlike the calculations shows an anomalous softening with a minimum around the wavevector \vc{q}=\frac{2\pi}{a}(0.25, 0, 0). Such a disparity with the calculated results, that are based on the assumption of an undisturbed translation- and point group invariant electronic structure of the CuO plane, indicates some {\it static} charge inhomogenities in the measured probes. Most likely these will be charge stripes along the CuO bonds which have the strongest coupling to certain longitudinal bond-stretching modes that in turn selfconsistently induce corresponding {\it dynamic} charge inhomogenities. The symmetry breaking by the mix of dynamic and static charge inhomogenities can lead to a reconstruction of the Fermi surface into small pockets.Comment: 7 pages, 4 figure

    Epitaxial strain effects in the spinel ferrites CoFe2O4 and NiFe2O4 from first principles

    Full text link
    The inverse spinels CoFe2O4 and NiFe2O4, which have been of particular interest over the past few years as building blocks of artificial multiferroic heterostructures and as possible spin-filter materials, are investigated by means of density functional theory calculations. We address the effect of epitaxial strain on the magneto-crystalline anisotropy and show that, in agreement with experimental observations, tensile strain favors perpendicular anisotropy, whereas compressive strain favors in-plane orientation of the magnetization. Our calculated magnetostriction constants λ100\lambda_{100} of about -220 ppm for CoFe2O4 and -45 ppm for NiFe2O4 agree well with available experimental data. We analyze the effect of different cation arrangements used to represent the inverse spinel structure and show that both LSDA+U and GGA+U allow for a good quantitative description of these materials. Our results open the way for further computational investigations of spinel ferrites
    • …
    corecore