33,958 research outputs found
Spectral determinants and zeta functions of Schr\"odinger operators on metric graphs
A derivation of the spectral determinant of the Schr\"odinger operator on a
metric graph is presented where the local matching conditions at the vertices
are of the general form classified according to the scheme of Kostrykin and
Schrader. To formulate the spectral determinant we first derive the spectral
zeta function of the Schr\"odinger operator using an appropriate secular
equation. The result obtained for the spectral determinant is along the lines
of the recent conjecture.Comment: 16 pages, 2 figure
A randomised, controlled, double blind, non-inferiority trial of ultrasound-guided fascia iliaca block vs. spinal morphine for analgesia after primary hip arthroplasty
We performed a single centre, double blind, randomised, controlled, non-inferiority study comparing ultrasound-guided fascia iliaca block with spinal morphine for the primary outcome of 24-h postoperative morphine consumption in patients undergoing primary total hip arthroplasty under spinal anaesthesia with levobupivacaine. One hundred and eight patients were randomly allocated to receive either ultrasound-guided fascia iliaca block with 2 mg.kg−1 levobupivacaine (fascia iliaca group) or spinal morphine 100 μg plus a sham ultrasound-guided fascia iliaca block using saline (spinal morphine group). The pre-defined non-inferiority margin was a median difference between the groups of 10 mg in cumulative intravenous morphine use in the first 24 h postoperatively. Patients in the fascia iliaca group received 25 mg more intravenous morphine than patients in the spinal morphine group (95% CI 9.0–30.5 mg, p < 0.001). Ultrasound-guided fascia iliaca block was significantly worse than spinal morphine in the provision of analgesia in the first 24 h after total hip arthroplasty. No increase in side-effects was noted in the spinal morphine group but the study was not powered to investigate all secondary outcomes
Finite pseudo orbit expansions for spectral quantities of quantum graphs
We investigate spectral quantities of quantum graphs by expanding them as
sums over pseudo orbits, sets of periodic orbits. Only a finite collection of
pseudo orbits which are irreducible and where the total number of bonds is less
than or equal to the number of bonds of the graph appear, analogous to a cut
off at half the Heisenberg time. The calculation simplifies previous approaches
to pseudo orbit expansions on graphs. We formulate coefficients of the
characteristic polynomial and derive a secular equation in terms of the
irreducible pseudo orbits. From the secular equation, whose roots provide the
graph spectrum, the zeta function is derived using the argument principle. The
spectral zeta function enables quantities, such as the spectral determinant and
vacuum energy, to be obtained directly as finite expansions over the set of
short irreducible pseudo orbits.Comment: 23 pages, 4 figures, typos corrected, references added, vacuum energy
calculation expande
Population inversion in optically pumped asymmetric quantum well terahertz lasers
Intersubband carrier lifetimes and population ratios are calculated for three- and four-level optically pumped terahertz laser structures. Laser operation is based on intersubband transitions between the conduction band states of asymmetric GaAs-Ga(1 – x)Al(x)As quantum wells. It is shown that the carrier lifetimes in three-level systems fulfill the necessary conditions for stimulated emission only at temperatures below 200 K. The addition of a fourth level, however, enables fast depopulation of the lower laser level by resonant longitudinal optical phonon emission and thus offers potential for room temperature laser operation. © 1997 American Institute of Physics
SO(3) Gauge Symmetry and Nearly Tri-bimaximal Neutrino Mixing
In this note I mainly focus on the neutrino physics part in my talk and
report the most recent progress made in \cite{YLW0}. It is seen that the
Majorana features of neutrinos and SO(3) gauge flavor symmetry can
simultaneously explain the smallness of neutrino masses and nearly
tri-bimaximal neutrino mixing when combining together with the mechanism of
approximate global U(1) family symmetry. The mixing angle and
CP-violating phase are in general nonzero and testable experimentally at the
allowed sensitivity. The model also predicts the existence of vector-like
Majorana neutrinos and charged leptons as well as new Higgs bosons, some of
them can be light and explored at the LHC and ILC.Comment: 8 pages, invited talk, contribute to the Proceedings of the 4th
International Conference on Flavor Physics (ICFP2007
Re-entrant hidden order at a metamagnetic quantum critical end point
Magnetization measurements of URu2Si2 in pulsed magnetic fields of 44 T
reveal that the hidden order phase is destroyed before appearing in the form of
a re-entrant phase between ~ 36 and 39 T. Evidence for conventional itinerant
electron metamagnetism at higher temperatures suggests that the re-entrant
phase is created in the vicinity of a quantum critical end point.Comment: 8 pages, including 3 figures (Physical Review Letters, in press) a
systematic error in the field calibration has been fixed since the original
submission of this manuscrip
Mixed neutron-star-plus-wormhole systems: Equilibrium configurations
We study gravitationally bound, spherically symmetric equilibrium
configurations consisting of ordinary (neutron-star) matter and of a
phantom/ghost scalar field which provides the nontrivial topology in the
system. For such mixed configurations, we show the existence of static,
regular, asymptotically flat general relativistic solutions. Based on the
energy approach, we discuss the stability as a function of the core density of
the neutron matter for various sizes of the wormhole throat.Comment: 18 pages, 3 figures, minor corrections to content, references added,
version published in PR
A new quantum fluid at high magnetic fields in the marginal charge-density-wave system -(BEDT-TTF)Hg(SCN) (where ~K and Rb)
Single crystals of the organic charge-transfer salts
-(BEDT-TTF)Hg(SCN) have been studied using Hall-potential
measurements (K) and magnetization experiments ( = K, Rb). The data show
that two types of screening currents occur within the high-field,
low-temperature CDW phases of these salts in response to time-dependent
magnetic fields. The first, which gives rise to the induced Hall potential, is
a free current (), present at the surface of the sample.
The time constant for the decay of these currents is much longer than that
expected from the sample resistivity. The second component of the current
appears to be magnetic (), in that it is a microscopic,
quasi-orbital effect; it is evenly distributed within the bulk of the sample
upon saturation. To explain these data, we propose a simple model invoking a
new type of quantum fluid comprising a CDW coexisting with a two-dimensional
Fermi-surface pocket which describes the two types of current. The model and
data are able to account for the body of previous experimental data which had
generated apparently contradictory interpretations in terms of the quantum Hall
effect or superconductivity.Comment: 13 pages, 11 figure
- …