32,773 research outputs found
Estimation of the Rate-Distortion Function
Motivated by questions in lossy data compression and by theoretical
considerations, we examine the problem of estimating the rate-distortion
function of an unknown (not necessarily discrete-valued) source from empirical
data. Our focus is the behavior of the so-called "plug-in" estimator, which is
simply the rate-distortion function of the empirical distribution of the
observed data. Sufficient conditions are given for its consistency, and
examples are provided to demonstrate that in certain cases it fails to converge
to the true rate-distortion function. The analysis of its performance is
complicated by the fact that the rate-distortion function is not continuous in
the source distribution; the underlying mathematical problem is closely related
to the classical problem of establishing the consistency of maximum likelihood
estimators. General consistency results are given for the plug-in estimator
applied to a broad class of sources, including all stationary and ergodic ones.
A more general class of estimation problems is also considered, arising in the
context of lossy data compression when the allowed class of coding
distributions is restricted; analogous results are developed for the plug-in
estimator in that case. Finally, consistency theorems are formulated for
modified (e.g., penalized) versions of the plug-in, and for estimating the
optimal reproduction distribution.Comment: 18 pages, no figures [v2: removed an example with an error; corrected
typos; a shortened version will appear in IEEE Trans. Inform. Theory
Gap opening in graphene by simple periodic inhomogeneous strain
Using ab-initio methods, we show that the uniform deformation either leaves
graphene (semi)metallic or opens up a small gap yet only beyond the mechanical
breaking point of the graphene, contrary to claims in the literature based on
tight-binding (TB) calculations. It is possible, however, to open up a global
gap by a sine-like one-dimensional inhomogeneous deformation applied along any
direction but the armchair one, with the largest gap for the corrugation along
the zigzag direction (~0.5 eV) without any electrostatic gating. The gap
opening has a threshold character with very sharp rise when the ratio of the
amplitude A and the period of the sine wave deformation lambda exceeds
(A/lambda)_c ~0.1 and the inversion symmetry is preserved, while it is
threshold-less when the symmetry is broken, in contrast with TB-derived
pseudo-magnetic field models.Comment: 6 pages, 6 figures; (v2) added figures illustrating opening gap in
Graphene mesh on BN, expanded analysis illustrating absence of
pseudo-magnetic fields in deformed Graphen
Manufacturing flexible light-emitting polymer displays with conductive lithographic film technology
We report on a new low-cost manufacturing process for flexible displays that has the potential to rapidly expand the market into areas that have traditionally been outside the scope of such technology. In this paper we consider the feasibility of using offset-lithography to deposit contacts for polymer light-emitting displays. We compare and contrast manufacturing criteria and present a case study detailing our initial results. It is expected that these developments will stimulate further progress in multilayer device
fabrication.
Cheap, flexible conductive interconnects have the potential to find applications in a wide variety of device structures. For the more challenging exploitation areas in multilayer devices, such as displays, it was found that the properties of conductive lithographic films were not optimal in their current form. Three parameters (conductivity, surface roughness and surface work function) were identified as critical to device fabrication. Calendering and electroless plating were investigated as methods to improve these properties. Both methods aimed to modify the surface roughness and conductivity, with the plating study also modifying the work function
Quantum mechanical scattering investigation of the thermionic and field induced emission components of the dark current in quantum well infrared photodetectors
The thermionic emission and field induced emission components of the dark current in quantum well infrared photodetectors are investigated using a quantum mechanical scattering theory approach. Calculations are performed for an experimentally reported device. Using this as a standard, the device dimensions were altered in order to increase its detection wavelength to cover the mid- (MIR) and far-infrared (FIR) regions of the spectrum. The behavior of the scattering mechanisms that contribute to the thermionic emission and field induced emission components were studied. The results highlight the change in the dominating scattering mediator across the MIR and FIR bands. © 2002 American Institute of Physics
Quantum box energies as a route to the ground state levels of self-assembled InAs pyramidal dots
A theoretical investigation of the ground state electronic structure of InAs/GaAs quantum confined structures is presented. Energy levels of cuboids and pyramidal shaped dots are calculated using a single-band, constant-confining-potential model that in former applications has proved to reproduce well both the predictions of very sophisticated treatments and several features of many experimental photoluminescence spectra. A connection rule between their ground state energies is found which allows the calculation of the energy levels of pyramidal dots using those of cuboids of suitably chosen dimensions, whose solution requires considerably less computational effort. The purpose of this work is to provide experimentalists with a versatile and simple method to analyze their spectra. As an example, this rule is then applied to successfully reproduce the position of the ground state transition peaks of some experimental photoluminescence spectra of self-assembled pyramidal dots. Furthermore the rule is used to predict the dimensions of a pyramidal dot, starting from the knowledge of the ground state transition energy and an estimate for the aspect ratio Q. © 2000 American Institute of Physics
Pesticides and metabolites in groundwater: examples from two major UK aquifers
Reducing the impact of anthropogenic pollution on groundwater bodies and ameliorating any deterioration of water quality is central to key legislative drivers such as the EU Water Framework Directive and the proposed daughter Directive relating to the protection of groundwater. Pesticide pollution has a direct impact on groundwater quality and an indirect impact on the associated aquatic ecosystems supported by groundwater. There is currently no legislative requirement to monitor pesticide metabolite concentrations in groundwater. Pesticide and metabolite results from two nationally important aquifers are presented, the Trassic Sandstone and the Chalk of Southern England.
Aerobic microbial degradation of diuron in the soil can
lead to the formation of three compounds; dichlorophenylmethyl urea (DCPMU), dichlorophenyl
urea (DCPU) and dichloroanaline (DCA).Median diuron concentrations were significantly higher
than each of the metabolites with outliers exceeding the
PVC on at least one occasion. At nine sites in Kent, Southern England, (60%) metabolites were more prevalent than diuron. Both aquifers are an important source of water, locally supplying up to 80% of public drinking water. The sandstone site has a predominantly arable landuse with a potential diffuse source of pesticides although soakaways are possible point sources.The chalk site has a mixture of arable and industrial/urban
landuse. A significant source has been from excessive
applications of diuron (“over-spray”) on a number of public
amenities. Data from both aquifers show that pesticide concentrations have a high degree of temporal variability. Elevated pesticide concentrations are associated with recharge events in both aquifer systems regardless of pesticide source terms. Pesticides from amenity use and diffuse agricultural sources both pose a threat to groundwater quality. Pesticide metabolites are present in significant concentrations in groundwaters. Systematic, long-term monitoring (5-10 years) is required to understand trends in groundwater quality
Wrinkling in engineering fabrics: a comparison between two different comprehensive modelling approaches
We consider two ‘comprehensive’ modelling approaches for engineering fabrics. We distinguish the two approaches using the terms ‘semi-discrete’ and ‘continuum’, reflecting their natures. We demonstrate a fitting procedure, used to identify the constitutive parameters of the continuum model from predictions of the semi-discrete model, the parameters of which are in turn fitted to experimental data. We, then, check the effectiveness of the continuum model by verifying the correspondence between semi-discrete and continuum model predictions using test cases not previously used in the identification process. Predictions of both modelling approaches are compared against full-field experimental kinematic data, obtained using stereoscopic digital image correlation techniques, and also with measured force data. Being a reduced order model and being implemented in an implicit rather than an explicit finite-element code, the continuum model requires significantly less computational power than the semi-discrete model and could therefore be used to more efficiently explore the mechanical response of engineering fabrics
- …