685 research outputs found
Rotating Dilaton Black Holes
We consider the axially symmetric coupled system of gravitation,
electromagnetism and a dilaton field. Reducing from four to three dimensions,
the system is described by gravity coupled to a non-linear -model. We
find the target space isometries and use them to generate new solutions. It
seems that it is only possible to generate rotating solutions from non-rotating
ones for the special cases when the dilaton coupling parameter . For those particular values, the target space symmetry is enlarged.Comment: 11 pages, RevTex, one figure include
Hidden symmetry of the three-dimensional Einstein-Maxwell equations
It is shown how to generate three-dimensional Einstein-Maxwell fields from
known ones in the presence of a hypersurface-orthogonal non-null Killing vector
field. The continuous symmetry group is isomorphic to the Heisenberg group
including the Harrison-type transformation. The symmetry of the
Einstein-Maxwell-dilaton system is also studied and it is shown that there is
the transformation between the Maxwell and the dilaton fields.
This transformation is identified with the Geroch
transformation of the four-dimensional vacuum Einstein equation in terms of the
Ka{\l}uza-Klein mechanism.Comment: 5 page
Superconducting p-branes and Extremal Black Holes
In Einstein-Maxwell theory, magnetic flux lines are `expelled' from a black
hole as extremality is approached, in the sense that the component of the field
strength normal to the horizon goes to zero. Thus, extremal black holes are
found to exhibit the sort of `Meissner effect' which is characteristic of
superconducting media. We review some of the evidence for this effect, and do
present new evidence for it using recently found black hole solutions in string
theory and Kaluza-Klein theory. We also present some new solutions, which arise
naturally in string theory, which are non-superconducting extremal black holes.
We present a nice geometrical interpretation of these effects derived by
looking carefully at the higher dimensional configurations from which the lower
dimensional black hole solutions are obtained. We show that other extremal
solitonic objects in string theory (such as p-branes) can also display
superconducting properties. In particular, we argue that the relativistic
London equation will hold on the worldvolume of `light' superconducting
p-branes (which are embedded in flat space), and that minimally coupled zero
modes will propagate in the adS factor of the near-horizon geometries of
`heavy', or gravitating, superconducting p-branes.Comment: 22 pages, 2 figure
Equation of state of neutron star cores and spin down of isolated pulsars
We study possible impact of a softening of the equation of state by a phase
transition, or appearance of hyperons, on the spin evolution of of isolated
pulsars. Numerical simulations are performed using exact 2-D simulations in
general relativity. The equation of state of dense matter at supranuclear
densities is poorly known. Therefore, the accent is put on the general
correlations between evolution and equation of state, and mathematical
strictness. General conjectures referring to the structure of the one-parameter
families of stationary configurations are formulated. The interplay of the back
bending phenomenon and stability with respect to axisymmetric perturbations is
described. Changes of pulsar parameters in a corequake following instability
are discussed, for a broad choice of phase transitions predicted by different
theories of dense matter. The energy release in a corequake, at a given initial
pressure, is shown to be independent of the angular momentum of collapsing
configuration. This result holds for various types of phases transition, with
and without metastability. We critically review observations of pulsars that
could be relevant for the detection of the signatures of the phase transition
in neutron star cores.Comment: 7 pages, 11 figures, to appear in Astrophysics and Space Science, in
the proceedings of "Isolated Neutron Stars: from the Interior to the
Surface", edited by D. Page, R. Turolla and S. Zan
Pulmonary Delivery of Nanoparticle-Bound Toll-like Receptor 9 Agonist for the Treatment of Metastatic Lung Cancer
CpG oligodeoxynucleotides are potent toll-like receptor (TLR) 9 agonists and have shown promise as anticancer agents in preclinical studies and clinical trials. Binding of CpG to TLR9 initiates a cascade of innate and adaptive immune responses, beginning with activation of dendritic cells and resulting in a range of secondary effects that include the secretion of pro-inflammatory cytokines, activation of natural killer cells, and expansion of T cell populations. Recent literature suggests that local delivery of CpG in tumors results in superior antitumor effects as compared to systemic delivery. In this study, we utilized PRINT (particle replication in nonwetting templates) nanoparticles as a vehicle to deliver CpG into murine lungs through orotracheal instillations. In two murine orthotopic metastasis models of non-small-cell lung cancer-344SQ (lung adenocarcinoma) and KAL-LN2E1 (lung squamous carcinoma), local delivery of PRINT-CpG into the lungs effectively promoted substantial tumor regression and also limited systemic toxicities associated with soluble CpG. Furthermore, cured mice were completely resistant to tumor rechallenge. Additionally, nanodelivery showed extended retention of CpG within the lungs as well as prolonged elevation of antitumor cytokines in the lungs, but no elevated levels of proinflammatory cytokines in the serum. These results demonstrate that PRINT-CpG is a potent nanoplatform for local treatment of lung cancer that has collateral therapeutic effects on systemic disease and an encouraging toxicity profile and may have the potential to treat lung metastasis of other cancer types
Exact Hypersurface-Homogeneous Solutions in Cosmology and Astrophysics
A framework is introduced which explains the existence and similarities of
most exact solutions of the Einstein equations with a wide range of sources for
the class of hypersurface-homogeneous spacetimes which admit a Hamiltonian
formulation. This class includes the spatially homogeneous cosmological models
and the astrophysically interesting static spherically symmetric models as well
as the stationary cylindrically symmetric models. The framework involves
methods for finding and exploiting hidden symmetries and invariant submanifolds
of the Hamiltonian formulation of the field equations. It unifies, simplifies
and extends most known work on hypersurface-homogeneous exact solutions. It is
shown that the same framework is also relevant to gravitational theories with a
similar structure, like Brans-Dicke or higher-dimensional theories.Comment: 41 pages, REVTEX/LaTeX 2.09 file (don't use LaTeX2e !!!) Accepted for
publication in Phys. Rev.
Maximally incompressible neutron star matter
Relativistic kinetic theory, based on the Grad method of moments as developed
by Israel and Stewart, is used to model viscous and thermal dissipation in
neutron star matter and determine an upper limit on the maximum mass of neutron
stars. In the context of kinetic theory, the equation of state must satisfy a
set of constraints in order for the equilibrium states of the fluid to be
thermodynamically stable and for perturbations from equilibrium to propagate
causally via hyperbolic equations. Application of these constraints to neutron
star matter restricts the stiffness of the most incompressible equation of
state compatible with causality to be softer than the maximally incompressible
equation of state that results from requiring the adiabatic sound speed to not
exceed the speed of light. Using three equations of state based on experimental
nucleon-nucleon scattering data and properties of light nuclei up to twice
normal nuclear energy density, and the kinetic theory maximally incompressible
equation of state at higher density, an upper limit on the maximum mass of
neutron stars averaging 2.64 solar masses is derived.Comment: 8 pages, 2 figure
Static perfect fluids with Pant-Sah equations of state
We analyze the 3-parameter family of exact, regular, static, spherically
symmetric perfect fluid solutions of Einstein's equations (corresponding to a
2-parameter family of equations of state) due to Pant and Sah and
"rediscovered" by Rosquist and the present author. Except for the Buchdahl
solutions which are contained as a limiting case, the fluids have finite radius
and are physically realistic for suitable parameter ranges. The equations of
state can be characterized geometrically by the property that the 3-metric on
the static slices, rescaled conformally with the fourth power of any linear
function of the norm of the static Killing vector, has constant scalar
curvature. This local property does not require spherical symmetry; in fact it
simplifies the the proof of spherical symmetry of asymptotically flat solutions
which we recall here for the Pant-Sah equations of state. We also consider a
model in Newtonian theory with analogous geometric and physical properties,
together with a proof of spherical symmetry of the asymptotically flat
solutions.Comment: 32 p., Latex, minor changes and correction
Relativistic superfluid models for rotating neutron stars
This article starts by providing an introductory overview of the theoretical
mechanics of rotating neutron stars as developped to account for the frequency
variations, and particularly the discontinuous glitches, observed in pulsars.
The theory suggests, and the observations seem to confirm, that an essential
role is played by the interaction between the solid crust and inner layers
whose superfluid nature allows them to rotate independently. However many
significant details remain to be clarified, even in much studied cases such as
the Crab and Vela. The second part of this article is more technical,
concentrating on just one of the many physical aspects that needs further
development, namely the provision of a satisfactorily relativistic (local but
not microscopic) treatment of the effects of the neutron superfluidity that is
involved.Comment: 42 pages LateX. Contribution to Physics of Neutron Star Interiors,
ed. D. Blasche, N.K. Glendenning, A. Sedrakian (ECT workshop, Trento, June
2000
- …