5,174 research outputs found

    Star cluster dynamics

    Full text link
    Dynamical evolution plays a key role in shaping the current properties of star clusters and star cluster systems. A detailed understanding of the effects of evolutionary processes is essential to be able to disentangle the properties which result from dynamical evolution from those imprinted at the time of cluster formation. In this review, we focus our attention on globular clusters and review the main physical ingredients driving their early and long-term evolution, describe the possible evolutionary routes and show how cluster structure and stellar content are affected by dynamical evolution.Comment: 20 pages, 2 figures. To appear as invited review article in a special issue of the Phil. Trans. Royal Soc. A: Ch. 7 "Star clusters as tracers of galactic star-formation histories" (ed. R. de Grijs). Fully peer reviewed. LaTeX, requires rspublic.cls style fil

    Towards an Understanding of the Globular Cluster Over--abundance around the Central Giant Elliptical NGC 1399

    Get PDF
    We investigate the kinematics of a combined sample of 74 globular clusters around NGC 1399. Their high velocity dispersion, increasing with radius, supports their association with the gravitational potential of the galaxy cluster rather than with that of NGC 1399 itself. We find no evidence for rotation in the full sample, although some indication for rotation in the outer regions. The data do not allow us to detect differences between the kinematics of the blue and red sub-populations of globular clusters. A comparison between the globular cluster systems of NGC 1399 and those of NGC 1404 and NGC 1380 indicates that the globular clusters in all three galaxies are likely to have formed via similar mechanisms and at similar epochs. The only property which distinguishes the NGC 1399 globular cluster system from these others is that it is ten times more abundant. We summarize the evidence for associating these excess globulars with the galaxy cluster rather than with NGC 1399 itself, and suggest that the over-abundance can be explained by tidal stripping, at an early epoch, of neighboring galaxies and subsequent accumulation of globulars in the gravitational potential of the galaxy cluster.Comment: AJ accepted (March issue), 27 pages (6 figures included), AAS style, two columns. Also available at http://www.eso.org/~mkissle

    A Color-Magnitude Diagram for a Globular Cluster In the Giant Elliptical Galaxy NGC 5128

    Get PDF
    The Hubble Space Telescope has been used to obtain WFPC2 (V,I) photometry for a large sample of stars in the outer halo of the giant elliptical NGC 5128 (d = 4 Mpc). The globular cluster N5128-C44, at the center of the Planetary Camera field, is well enough resolved to permit the construction of a color-magnitude diagram (CMD) for it which covers the brightest two magnitudes of the giant branch. The CMD is consistent with that of a normal old, moderately low-metallicity ([Fe/H] = -1.30 globular cluster, distinctly more metal-poor than most of the field halo stars at the same projected location (which average [Fe/H] ~ -0.5). This is the most distant globular cluster in which direct color-magnitude photometry has been achieved to date, and the first one belonging to a giant E galaxy.Comment: 12 pages, LaTeX, including 5 postscript figures; submitted to Astronomical Journa

    Diamonds on the Hat: Globular Clusters in The Sombrero Galaxy (M104)

    Full text link
    Images from the HST ACS are used to carry out a new photometric study of the globular clusters (GCs) in M104, the Sombrero galaxy. The primary focus of our study is the characteristic distribution function of linear sizes (SDF) of the GCs. We measure the effective radii for 652 clusters with PSF-convolved King and Wilson dynamical model fits. The SDF is remarkably similar to those measured for other large galaxies of all types, adding strong support to the view that it is a "universal" feature of globular cluster systems. We develop a more general interpretation of the size distribution function for globular clusters, proposing that the shape of the SDF that we see today for GCs is strongly influenced by the early rapid mass loss during their star forming stage, coupled with stochastic differences from cluster to cluster in the star formation efficiency (SFE) and their initial sizes. We find that the observed SDF shape can be accurately predicted by a simple model in which the protocluster clouds had characteristic sizes of 0.9±0.10.9 \pm 0.1 pc and SFEs of 0.3±0.070.3 \pm 0.07. The colors and luminosities of the M104 clusters show the clearly defined classic bimodal form. The blue sequence exhibits a mass/metallicity relation (MMR), following a scaling of heavy-element abundance with luminosity of Z∼L0.3Z \sim L^{0.3} very similar to what has been found in most giant elliptical galaxies. A quantitative self-enrichment model provides a good first-order match to the data for the same initial SFE and protocluster size that were required to explain the SDF. We also discuss various forms of the globular cluster Fundamental Plane (FP) of structural parameters, and show that useful tests of it can be extended to galaxies beyond the Local Group.Comment: In press for MNRA

    B-R Colors of Globular Clusters in NGC 6166 (A2199)

    Get PDF
    We have analysed new R-band photometry of globular clusters in NGC 6166, the cD galaxy in the cooling flow cluster A2199. In combination with the earlier B photometry of Pritchet \& Harris (1990), we obtain B−-R colours for ∼\sim 40 globular clusters in NGC 6166. The mean B−-R is 1.26 ±\pm 0.11, corresponding to a mean [Fe/H] = −-1 ±\pm 0.4. Given that NGC 6166 is one of the most luminous cD galaxies studied to date, our result implies significant scatter in the relationship between mean cluster [Fe/H] and parent galaxy luminosity. We obtain a globular cluster specific frequency of SN_N ∼\sim 9, with a possible range between 5 and 18. This value is inconsistent with the value of SN_N ≤\leq 4 determined earlier by Pritchet \& Harris (1990) from B-band photometry, and we discuss possible reasons for the discrepancy. Finally, we reassess whether or not cooling flows are an important mechanism for forming globular clusters in gE/cD galaxies.Comment: 8 pages, uuencoded, gzipped tar file with latex file, 6 figures (Fig 1 omitted because of size), and mn.sty file. Figures will be embedded into the postscript file. Accepted (March 1996) for publication in MNRA
    • …
    corecore