49,706 research outputs found
Discrete Group Actions on Spacetimes: Causality Conditions and the Causal Boundary
Suppose a spacetime is a quotient of a spacetime by a discrete group
of isometries. It is shown how causality conditions in the two spacetimes are
related, and how can one learn about the future causal boundary on by
studying structures in . The relations between the two are particularly
simple (the boundary of the quotient is the quotient of the boundary) if both
and have spacelike future boundaries and if it is known that the
quotient of the future completion of is past-distinguishing. (That last
assumption is automatic in the case of being multi-warped.)Comment: 32 page
Unveiling Palomar 2: The Most Obscure Globular Cluster in the Outer Halo
We present the first color-magnitude study for Palomar 2, a distant and
heavily obscured globular cluster near the Galactic anticenter. Our (V,V-I)
color-magnitude diagram (CMD), obtained with the UH8K camera at the CFHT,
reaches V(lim) = 24 and clearly shows the principal sequences of the cluster,
though with substantial overall foreground absorption and differential
reddening. The CMD morphology shows a well populated red horizontal branch with
a sparser extension to the blue, similar to clusters such as NGC 1261, 1851, or
6229 with metallicities near [Fe/H] = -1.3, placing it about 34 kpc
from the Galactic center. We use starcounts of the bright stars to measure the
core radius, half-mass radius, and central concentration of the cluster. Its
integrated luminosity is M_V = -7.9, making it clearly brighter and more
massive than most other clusters in the outer halo.Comment: 25 pages, aastex, with 8 postscript figures; accepted for publication
in AJ, September 1997. Also available by e-mail from
[email protected]. Please consult Harris directly for (big)
postscript files of Figures 1a,b (the images of the cluster
Stable and unstable regimes in Bose-Fermi mixture with attraction between components
A collapse of the trapped boson- fermion mixture with the attraction between
bosons and fermions is investigated in the framework of the effective
Hamiltonian for the Bose system. The properties of the Rb and K
mixture are analyzed quantitatively at . We find numerically solutions of
modified Gross- Pitaevskii equation which continuously go from stable to
unstable branch. We discuss the relation of the onset of collapse with
macroscopic properties of the system. A comparison with the case of a Bose
condensate of atomic system is given.Comment: 7 pages, 5 figure
Jet photoproduction and the structure of the photon
Various jet observables in photoproduction are studied and compared to data
from HERA. The feasibility of using a dijet sample for constraining the parton
distributions in the photon is then studied. For the current data the
experimental and theoretical uncertainties are comparable to the variation due
to changing the photon parton distribution set.Comment: 20 pages including 11 figures. Latex using revtex and psfig macros.
Several references added. Submitted to Phys. Rev.
Studies in the Lake Ontario Basin using ERTS-1 and high altitude data
Studies in the Lake Ontario Basin are designed to provide input for models of river basin discharge and macro-scale features of lake circulation. Lake studies appear to require high altitude imagery to record the dynamic features of Lake Ontario so that ERTS-1 data may be interpreted. Land area studies require input of soil moisture, land use and soil-sediment-geomorphology measurements some of which appear to be available, on a regional scale from ERTS-1 products
Multi-critical point in a diluted bilayer Heisenberg quantum antiferromagnet
The S=1/2 Heisenberg bilayer antiferromagnet with randomly removed
inter-layer dimers is studied using quantum Monte Carlo simulations. A
zero-temperature multi-critical point (p*,g*) at the classical percolation
density p=p* and inter-layer coupling g* approximately 0.16 is demonstrated.
The quantum critical exponents of the percolating cluster are determined using
finite-size scaling. It is argued that the associated finite-temperature
quantum critical regime extends to zero inter-layer coupling and could be
relevant for antiferromagnetic cuprates doped with non-magnetic impurities.Comment: 4 pages, 6 figures. v2: only minor changes; accepted for publication
in Phys. Rev. Let
Trends in total column ozone measurements
It is important to ensure the best available data are used in any determination of possible trends in total ozone in order to have the most accurate estimates of any trends and the associated uncertainties. Accordingly, the existing total ozone records were examined in considerable detail. Once the best data set has been produced, the statistical analysis must examine the data for any effects that might indicate changes in the behavior of global total ozone. The changes at any individual measuring station could be local in nature, and herein, particular attention was paid to the seasonal and latitudinal variations of total ozone, because two dimensional photochemical models indicate that any changes in total ozone would be most pronounced at high latitudes during the winter months. The conclusions derived from this detailed examination of available total ozone can be split into two categories, one concerning the quality and the other the statistical analysis of the total ozone record
Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal
We show that Coherent Population Oscillations effect allows to burn a narrow
spectral hole (26Hz) within the homogeneous absorption line of the optical
transition of an Erbium ion-doped crystal. The large dispersion of the index of
refraction associated with this hole permits to achieve a group velocity as low
as 2.7m/s with a ransmission of 40%. We especially benefit from the
inhomogeneous absorption broadening of the ions to tune both the transmission
coefficient, from 40% to 90%, and the light group velocity from 2.7m/s to
100m/s
- …