2 research outputs found

    IFIT3 (interferon induced protein with tetratricopeptide repeats 3) modulates STAT1 expression in small extracellular vesicles.

    Get PDF
    We have previously shown that the αvβ6 integrin plays a key role in promoting prostate cancer (PrCa) and it can be transferred to recipient cells via small extracellular vesicles (sEVs). Furthermore, we have reported in a proteomic analysis that αvβ6 integrin down-regulation increases the expression of IFIT3 (interferon induced protein with tetratricopeptide repeats 3) in PrCa cells and their derived sEVs. IFIT3 is a protein well known for being an antiviral effector, but recently its role in cancer has also been elucidated. To study the relationship between IFIT3 and STAT1 (signal transducer and activator of transcription 1), an upstream regulator of IFIT3, in PrCa cells and their released sEVs, we used CRISPR/Cas9 techniques to down-regulate the expression of the β6 integrin subunit, IFIT3 or STAT1. Our results show that IFIT3 and STAT1 are highly expressed in PrCa cells devoid of the β6 integrin subunit. However, IFIT3 but not STAT1, is present in sEVs derived from PrCa cells lacking the β6 integrin subunit. We demonstrate that loss of IFIT3 generates sEVs enriched in STAT1 but reduces the levels of STAT1 in the cells. As expected, IFIT3 is not detectable in STAT1 negative cells or sEVs. We thus propose that the observed STAT1 enrichment in sEVs is a compensatory mechanism for the loss of IFIT3. Overall, these results provide new insights into the intrinsic role of IFIT3 as a regulator of STAT1 expression in sEVs and in intercellular communication in PrCa

    Small extracellular vesicle-mediated ITGB6 siRNA delivery downregulates the αVβ6 integrin and inhibits adhesion and migration of recipient prostate cancer cells

    Get PDF
    The αVβ6 integrin, an epithelial-specific cell surface receptor absent in normal prostate and expressed during prostate cancer (PrCa) progression, is a therapeutic target in many cancers. Here, we report that transcript levels of ITGB6 (encoding the β6 integrin subunit) are significantly increased in metastatic castrate-resistant androgen receptor-negative prostate tumors compared to androgen receptor-positive prostate tumors. In addition, the αVβ6 integrin protein levels are significantly elevated in androgen receptor-negative PrCa patient derived xenografts (PDXs) compared to androgen receptor-positive PDXs. In vitro, the androgen receptor-negative PrCa cells express high levels of the αVβ6 integrin compared to androgen receptor-positive PrCa cells. Additionally, expression of androgen receptor (wild type or variant 7) in androgen receptor-negative PrCa cells downregulates the expression of the β6 but not αV subunit compared to control cells. We demonstrate an efficient strategy to therapeutically target the αVβ6 integrin during PrCa progression by using short interfering RNA (siRNA) loaded into PrCa cell-derived small extracellular vesicles (sEVs). We first demonstrate that fluorescently-labeled siRNAs can be efficiently loaded into PrCa cell-derived sEVs by electroporation. By confocal microscopy, we show efficient internalization of these siRNA-loaded sEVs into PrCa cells. We show that sEV-mediated delivery of ITGB6-targeting siRNAs into PC3 cells specifically downregulates expression of the β6 subunit. Furthermore, treatment with sEVs encapsulating ITGB6 siRNA significantly reduces cell adhesion and migration of PrCa cells on an αVβ6-specific substrate, LAP-TGFβ1. Our results demonstrate an approach for specific targeting of the αVβ6 integrin in PrCa cells using sEVs encapsulating ITGB6-specific siRNAs
    corecore