117 research outputs found
Evaluation of Activated Partial Thromboplastin Time (aPTT) Reagents for Application in Biomedical Diagnostic Device Development
Introduction: The most commonly used test for monitoring heparin therapy is the activated partial thromboplastin time (aPTT). The response of available aPTT reagents to heparin varies significantly. The aim of this study was to highlight the differences between aPTT reagents stored in a dried format to select the most suitable formulations to be used for the development of point-of-care diagnostic devices used for monitoring of unfractionated heparin dose response. Methods: Ten reagents were analysed in terms of their performance in liquid and in dried form after storage for 24 h and 14 days. Performance was assessed by measurement of the clotting time (CT) as evidenced by the onset of thrombin formation using a chromogenic thrombin substrate in plasma samples activated with these formulations. Results: Reagents in all of the three forms tested (liquid, 24 h and 14 days) resulted in significant shortening of CTs in comparison with the nonactivated plasma CT. Liquids returned more rapid CTs in comparison with dried reagents. Most of the reagents were more sensitive to heparin in dried, rather than in liquid form. Dried reagents based on kaolin as a surface activator were notably more effective in achieving short CT than others, while dried reagents composed of silica and synthetic phospholipids were the most sensitive to heparin. Conclusion: Two reagents, namely aPTT-SP and SynthASIL both of which are based on synthetic phospholipids and silica, were identified as promising candidates for incorporation into point-of-care diagnostic device platforms as dried reagents
Coagulation Monitoring Devices: Past, Present, and Future at the Point of Care
Automated technologies have revolutionised the monitoring of coagulation disorders in the central hospital laboratory setting, allowing for high throughput testing, improved accuracy and precision, accompanied by a marked reduction in human error. However, they still require trained operators and sample transportation. With the advent of point of care (POC) testing, the working principle of traditional coagulometers was used as the foundation for the development of miniaturised devices. A number of POC coagulation devices have been commercially available for many years now, allowing the patient to assume more control over the management of their own medication, e.g. warfarin. While POC devices for measuring anticoagulation have relied principally on clotting time tests, novel platelet function tests, and factor-specific assays based on enzymatic or immunoassay principles are becoming available, driven by the emergence of new anticoagulant drugs, in addition to the inability of clotting tests to accurately detect many thrombotic disorders. This review highlights recent progress in the development of POC coagulation monitoring technologies and examines their future potential in clinical diagnostics
Effects of four commercially available factor Xa proteins on the fluorogenic anti-factor Xa assay when monitoring unfractionated heparin
Four commercially available factor Xa (FXa) reagents were evaluated in a fluorogenic anti-FXa assay. The four reagents - of which three were of human origin and the fourth was bovine - were compared in terms of the resulting assay dynamic ranges, lag times, coefficient of variation and R 2 values, as well as their sensitivity to unfractionated heparin within the therapeutic range of 0-1.2U/ml. Similar performance of reagents in the fluorogenic anti-FXa assay was observed independent of the source of the reagent or its physical state, which may assist in the standardization of coagulation assays in clinical settings. © 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins
Comparison of the Anticoagulant Response of a Novel Fluorogenic Anti-FXa Assay wth Two Commercial Anti-FXa Chromogenic Assays
Introduction: Fast and accurate monitoring is crucial in the successful regulation of coagulation therapy. For the treatment of venous thromboembolism, both unfractionated heparin (UFH) and low molecular weight heparins (LMWH) are commonly administered. The chromogenic anti-factor Xa (FXa) assay is currently considered the ‘gold standard’ assay for monitoring LMWH. However different commercial chromogenic methods often differ when tested with the same samples. Fluorogenic anti-FXa assays have the potential to offer greater benefits over chromogenic assays in terms of greater specificity, sensitivity and they are not so influenced by sample opacity or turbidity. Materials and Methods: Commercial plasmas were spiked with pharmacologically relevant concentrations (0–1 U/ml) of UFH, enoxaparin, and tinzaparin. The fluorogenic assay was carried out using previously optimized concentrations of 4 nM FXa and 0.9 μM fluorogenic substrate, in addition to 6.25 μl of 100 mM CaCl2 and 43.75 μl of plasma. The Biophen® and Coamatic chromogenic assays were carried out according to the manufacturer’s instructions. Reaction rates and endpoint values were analyzed and statistical analysis by means of one-way analysis of variance (ANOVA) was performed. Results: The fluorogenic anti-FXa assay was found to have the broadest therapeutic range of 0-1 U/ml with CVs of \u3c 5% for UFH and tinzaparin and CVs \u3c 9% for enoxaparin. Despite their limited measuring range, excellent reproducibility was observed with both chromogenic assays Conclusions: This study indicated that the fluorogenic assay is the most sensitive assay with the broadest dynamic range for monitoring LMWH therapy when compared with standard chromogenic assays
Brain imaging predictors and the international study to predict optimized treatment for depression: study protocol for a randomized controlled trial
BACKGROUND: Approximately 50% of patients with major depressive disorder (MDD) do not respond optimally to antidepressant treatments. Given this is a large proportion of the patient population, pretreatment tests that predict which patients will respond to which types of treatment could save time, money and patient burden. Brain imaging offers a means to identify treatment predictors that are grounded in the neurobiology of the treatment and the pathophysiology of MDD. METHODS/DESIGN: The international Study to Predict Optimized Treatment in Depression is a multi-center, parallel model, randomized clinical trial with an embedded imaging sub-study to identify such predictors. We focus on brain circuits implicated in major depressive disorder and its treatment. In the full trial, depressed participants are randomized to receive escitalopram, sertraline or venlafaxine-XR (open-label). They are assessed using standardized multiple clinical, cognitive-emotional behavioral, electroencephalographic and genetic measures at baseline and at eight weeks post-treatment. Overall, 2,016 depressed participants (18 to 65 years old) will enter the study, of whom a target of 10% will be recruited into the brain imaging sub-study (approximately 67 participants in each treatment arm) and 67 controls. The imaging sub-study is conducted at the University of Sydney and at Stanford University. Structural studies include high-resolution three-dimensional T1-weighted, diffusion tensor and T2/Proton Density scans. Functional studies include standardized functional magnetic resonance imaging (MRI) with three cognitive tasks (auditory oddball, a continuous performance task, and Go-NoGo) and two emotion tasks (unmasked conscious and masked non-conscious emotion processing tasks). After eight weeks of treatment, the functional MRI is repeated with the above tasks. We will establish the methods in the first 30 patients. Then we will identify predictors in the first half (n = 102), test the findings in the second half, and then extend the analyses to the total sample. TRIAL REGISTRATION: International Study to Predict Optimized Treatment - in Depression (iSPOT-D). ClinicalTrials.gov, NCT00693849
LSST: from Science Drivers to Reference Design and Anticipated Data Products
(Abridged) We describe here the most ambitious survey currently planned in
the optical, the Large Synoptic Survey Telescope (LSST). A vast array of
science will be enabled by a single wide-deep-fast sky survey, and LSST will
have unique survey capability in the faint time domain. The LSST design is
driven by four main science themes: probing dark energy and dark matter, taking
an inventory of the Solar System, exploring the transient optical sky, and
mapping the Milky Way. LSST will be a wide-field ground-based system sited at
Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m
effective) primary mirror, a 9.6 deg field of view, and a 3.2 Gigapixel
camera. The standard observing sequence will consist of pairs of 15-second
exposures in a given field, with two such visits in each pointing in a given
night. With these repeats, the LSST system is capable of imaging about 10,000
square degrees of sky in a single filter in three nights. The typical 5
point-source depth in a single visit in will be (AB). The
project is in the construction phase and will begin regular survey operations
by 2022. The survey area will be contained within 30,000 deg with
, and will be imaged multiple times in six bands, ,
covering the wavelength range 320--1050 nm. About 90\% of the observing time
will be devoted to a deep-wide-fast survey mode which will uniformly observe a
18,000 deg region about 800 times (summed over all six bands) during the
anticipated 10 years of operations, and yield a coadded map to . The
remaining 10\% of the observing time will be allocated to projects such as a
Very Deep and Fast time domain survey. The goal is to make LSST data products,
including a relational database of about 32 trillion observations of 40 billion
objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures
available from https://www.lsst.org/overvie
Population genomics of the critically endangered kākāpō
Summary The kākāpō is a flightless parrot endemic to New Zealand. Once common in the archipelago, only 201 individuals remain today, most of them descending from an isolated island population. We report the first genome-wide analyses of the species, including a high-quality genome assembly for kākāpō, one of the first chromosome-level reference genomes sequenced by the Vertebrate Genomes Project (VGP). We also sequenced and analyzed 35 modern genomes from the sole surviving island population and 14 genomes from the extinct mainland population. While theory suggests that such a small population is likely to have accumulated deleterious mutations through genetic drift, our analyses on the impact of the long-term small population size in kākāpō indicate that present-day island kākāpō have a reduced number of harmful mutations compared to mainland individuals. We hypothesize that this reduced mutational load is due to the island population having been subjected to a combination of genetic drift and purging of deleterious mutations, through increased inbreeding and purifying selection, since its isolation from the mainland ∼10,000 years ago. Our results provide evidence that small populations can survive even when isolated for hundreds of generations. This work provides key insights into kākāpō breeding and recovery and more generally into the application of genetic tools in conservation efforts for endangered species
Exome-chip meta-analysis identifies novel loci associated with cardiac conduction, including ADAMTS6.
BACKGROUND: Genome-wide association studies conducted on QRS duration, an electrocardiographic measurement associated with heart failure and sudden cardiac death, have led to novel biological insights into cardiac function. However, the variants identified fall predominantly in non-coding regions and their underlying mechanisms remain unclear. RESULTS: Here, we identify putative functional coding variation associated with changes in the QRS interval duration by combining Illumina HumanExome BeadChip genotype data from 77,898 participants of European ancestry and 7695 of African descent in our discovery cohort, followed by replication in 111,874 individuals of European ancestry from the UK Biobank and deCODE cohorts. We identify ten novel loci, seven within coding regions, including ADAMTS6, significantly associated with QRS duration in gene-based analyses. ADAMTS6 encodes a secreted metalloprotease of currently unknown function. In vitro validation analysis shows that the QRS-associated variants lead to impaired ADAMTS6 secretion and loss-of function analysis in mice demonstrates a previously unappreciated role for ADAMTS6 in connexin 43 gap junction expression, which is essential for myocardial conduction. CONCLUSIONS: Our approach identifies novel coding and non-coding variants underlying ventricular depolarization and provides a possible mechanism for the ADAMTS6-associated conduction changes.BH
Development and validation of a targeted gene sequencing panel for application to disparate cancers
Next generation sequencing has revolutionised genomic studies of cancer, having facilitated the development of precision oncology treatments based on a tumour’s molecular profile. We aimed to develop a targeted gene sequencing panel for application to disparate cancer types with particular focus on tumours of the head and neck, plus test for utility in liquid biopsy. The final panel designed through Roche/Nimblegen combined 451 cancer-associated genes (2.01 Mb target region). 136 patient DNA samples were collected for performance and application testing. Panel sensitivity and precision were measured using well-characterised DNA controls (n = 47), and specificity by Sanger sequencing of the Aryl Hydrocarbon Receptor Interacting Protein (AIP) gene in 89 patients. Assessment of liquid biopsy application employed a pool of synthetic circulating tumour DNA (ctDNA). Library preparation and sequencing were conducted on Illumina-based platforms prior to analysis with our accredited (ISO15189) bioinformatics pipeline. We achieved a mean coverage of 395x, with sensitivity and specificity of >99% and precision of >97%. Liquid biopsy revealed detection to 1.25% variant allele frequency. Application to head and neck tumours/cancers resulted in detection of mutations aligned to published databases. In conclusion, we have developed an analytically-validated panel for application to cancers of disparate types with utility in liquid biopsy
Discovery of novel heart rate-associated loci using the Exome Chip
Resting heart rate is a heritable trait, and an increase in heart rate is associated with increased mortality risk. Genome-wide association study analyses have found loci associated with resting heart rate, at the time of our study these loci explained 0.9% of the variation. This study aims to discover new genetic loci associated with heart rate from Exome Chip meta-analyses.
Heart rate was measured from either elecrtrocardiograms or pulse recordings. We meta-analysed heart rate association results from 104 452 European-ancestry individuals from 30 cohorts, genotyped using the Exome Chip. Twenty-four variants were selected for follow-up in an independent dataset (UK Biobank, N = 134 251). Conditional and gene-based testing was undertaken, and variants were investigated with bioinformatics methods.
We discovered five novel heart rate loci, and one new independent low-frequency non-synonymous variant in an established heart rate locus (KIAA1755). Lead variants in four of the novel loci are non-synonymous variants in the genes C10orf71, DALDR3, TESK2 and SEC31B. The variant at SEC31B is significantly associated with SEC31B expression in heart and tibial nerve tissue. Further candidate genes were detected from long-range regulatory chromatin interactions in heart tissue (SCD, SLF2 and MAPK8). We observed significant enrichment in DNase I hypersensitive sites in fetal heart and lung. Moreover, enrichment was seen for the first time in human neuronal progenitor cells (derived from embryonic stem cells) and fetal muscle samples by including our novel variants.
Our findings advance the knowledge of the genetic architecture of heart rate, and indicate new candidate genes for follow-up functional studies
- …