350 research outputs found
Student Perceptions of a Flipped Pharmacotherapy Course
Objective. To evaluate student perception of the flipped classroom redesign of a required pharmacotherapy course
Non-perturbative dynamics of hot non-Abelian gauge fields: beyond leading log approximation
Many aspects of high-temperature gauge theories, such as the electroweak
baryon number violation rate, color conductivity, and the hard gluon damping
rate, have previously been understood only at leading logarithmic order (that
is, neglecting effects suppressed only by an inverse logarithm of the gauge
coupling). We discuss how to systematically go beyond leading logarithmic order
in the analysis of physical quantities. Specifically, we extend to
next-to-leading-log order (NLLO) the simple leading-log effective theory due to
Bodeker that describes non-perturbative color physics in hot non-Abelian
plasmas. A suitable scaling analysis is used to show that no new operators
enter the effective theory at next-to-leading-log order. However, a NLLO
calculation of the color conductivity is required, and we report the resulting
value. Our NLLO result for the color conductivity can be trivially combined
with previous numerical work by G. Moore to yield a NLLO result for the hot
electroweak baryon number violation rate.Comment: 20 pages, 1 figur
The Science Case for an Extended Spitzer Mission
Although the final observations of the Spitzer Warm Mission are currently
scheduled for March 2019, it can continue operations through the end of the
decade with no loss of photometric precision. As we will show, there is a
strong science case for extending the current Warm Mission to December 2020.
Spitzer has already made major impacts in the fields of exoplanets (including
microlensing events), characterizing near Earth objects, enhancing our
knowledge of nearby stars and brown dwarfs, understanding the properties and
structure of our Milky Way galaxy, and deep wide-field extragalactic surveys to
study galaxy birth and evolution. By extending Spitzer through 2020, it can
continue to make ground-breaking discoveries in those fields, and provide
crucial support to the NASA flagship missions JWST and WFIRST, as well as the
upcoming TESS mission, and it will complement ground-based observations by LSST
and the new large telescopes of the next decade. This scientific program
addresses NASA's Science Mission Directive's objectives in astrophysics, which
include discovering how the universe works, exploring how it began and evolved,
and searching for life on planets around other stars.Comment: 75 pages. See page 3 for Table of Contents and page 4 for Executive
Summar
Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque
Carotid intima media thickness (cIMT) and plaque determined by ultrasonography are established measures of subclinical atherosclerosis that each predicts future cardiovascular disease events. We conducted a meta-analysis of genome-wide association data in 31,211 participants of European ancestry from nine large studies in the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. We then sought additional evidence to support our findings among 11,273 individuals using data from seven additional studies. In the combined meta-analysis, we identified three genomic regions associated with common carotid intima media thickness and two different regions associated with the presence of carotid plaque (P < 5 Ă 10 -8). The associated SNPs mapped in or near genes related to cellular signaling, lipid metabolism and blood pressure homeostasis, and two of the regions were associated with coronary artery disease (P < 0.006) in the Coronary Artery Disease Genome-Wide Replication and Meta-Analysis (CARDIoGRAM) consortium. Our findings may provide new insight into pathways leading to subclinical atherosclerosis and subsequent cardiovascular events
Inflammatory and Coagulation Biomarkers and Mortality in Patients with HIV Infection
Analyzing biomarker data from participants in a previous randomized controlled trial of continuous versus interrupted HIV treatment (the SMART trial), James Neaton and colleagues find that mortality was related to IL-6 and fibrin D-dimers
Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.
The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain âŒ8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD
The Genome Sequence of Caenorhabditis briggsae: A Platform for Comparative Genomics
The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C. briggsae genome to a high-quality draft stage and compared it to the finished C. elegans sequence. We predict approximately 19,500 protein-coding genes in the C. briggsae genome, roughly the same as in C. elegans. Of these, 12,200 have clear C. elegans orthologs, a further 6,500 have one or more clearly detectable C. elegans homologs, and approximately 800 C. briggsae genes have no detectable matches in C. elegans. Almost all of the noncoding RNAs (ncRNAs) known are shared between the two species. The two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers. Operons, a distinctive feature of C. elegans, are highly conserved in C. briggsae, with the arrangement of genes being preserved in 96% of cases. The difference in size between the C. briggsae (estimated at approximately 104 Mbp) and C. elegans (100.3 Mbp) genomes is almost entirely due to repetitive sequence, which accounts for 22.4% of the C. briggsae genome in contrast to 16.5% of the C. elegans genome. Few, if any, repeat families are shared, suggesting that most were acquired after the two species diverged or are undergoing rapid evolution. Coclustering the C. elegans and C. briggsae proteins reveals 2,169 protein families of two or more members. Most of these are shared between the two species, but some appear to be expanding or contracting, and there seem to be as many as several hundred novel C. briggsae gene families. The C. briggsae draft sequence will greatly improve the annotation of the C. elegans genome. Based on similarity to C. briggsae, we found strong evidence for 1,300 new C. elegans genes. In addition, comparisons of the two genomes will help to understand the evolutionary forces that mold nematode genomes
Expression Signature of IFN/STAT1 Signaling Genes Predicts Poor Survival Outcome in Glioblastoma Multiforme in a Subtype-Specific Manner
Previous reports have implicated an induction of genes in IFN/STAT1 (Interferon/STAT1) signaling in radiation resistant and prosurvival tumor phenotypes in a number of cancer cell lines, and we have hypothesized that upregulation of these genes may be predictive of poor survival outcome and/or treatment response in Glioblastoma Multiforme (GBM) patients. We have developed a list of 8 genes related to IFN/STAT1 that we hypothesize to be predictive of poor survival in GBM patients. Our working hypothesis that over-expression of this gene signature predicts poor survival outcome in GBM patients was confirmed, and in addition, it was demonstrated that the survival model was highly subtype-dependent, with strong dependence in the Proneural subtype and no detected dependence in the Classical and Mesenchymal subtypes. We developed a specific multi-gene survival model for the Proneural subtype in the TCGA (the Cancer Genome Atlas) discovery set which we have validated in the TCGA validation set. In addition, we have performed network analysis in the form of Bayesian Network discovery and Ingenuity Pathway Analysis to further dissect the underlying biology of this gene signature in the etiology of GBM. We theorize that the strong predictive value of the IFN/STAT1 gene signature in the Proneural subtype may be due to chemotherapy and/or radiation resistance induced through prolonged constitutive signaling of these genes during the course of the illness. The results of this study have implications both for better prediction models for survival outcome in GBM and for improved understanding of the underlying subtype-specific molecular mechanisms for GBM tumor progression and treatment response
- âŠ