67,804 research outputs found
Recommended from our members
Ultrathin graphitic structures and carbon nanotubes in a purified synthetic graphite
A new class of carbon structure is reported, which consists of microscale graphitic shells bounded by curved and faceted planes containing two to five layers. These structures were originally found in a commercial graphite produced by the Acheson process, followed by a purification treatment. The particles, which could be several hundreds of nanometres in size, were frequently decorated with nanoscale carbon particles, or short nanotubes. In some cases, nanotubes were found to be seamlessly connected to the thin shells, indicating that the formation of the shells and that of the nanotubes are intimately connected. The structures are believed to form during a purification process which involves passing an electric current through the graphite in the presence of a reactive gas. In support of this, it is shown that similar particles can be produced in a standard carbon arc apparatus. With their extremely thin graphene walls and high surface areas, the new structures may have a range of useful properties
Recommended from our members
Structural transformation of graphite by arc-discharge
The formation of novel structures by the passage of an electric current through graphite is described. These structures apparently consist of hollow three-dimensional graphitic shells bounded by curved and faceted planes, typically made up of two graphene layers. The curved structures were frequently decorated with nano-scale carbon particles, or short nanotubes. In some cases, nanotubes were found to be seamlessly connected to the thin shells, indicating that the formation of the shells and the nanotubes is intimately connected. Small nanotubes or nanoparticles were also sometimes found encapsulated inside the hollow structures, while fullerene-like particles were often seen attached to the outside surfaces. With their high surface areas and structural perfection, the new carbon structures may have applications as anodes of lithium ion batteries or as components of composite materials
Computer program for solving compressible nonsimilar-boundary-layer equations for laminar, transitional, or turbulent flows of a perfect gas
A computer program is described which solves the compressible laminar, transitional, or turbulent boundary-layer equations for planar or axisymmetric flows. Three-point implicit difference relations are used to reduce the momentum and energy equations to finite-difference form. These equations are solved simultaneously without iteration. Turbulent flow is treated by the inclusion of either a two-layer eddy-viscosity model or a mixing-length formulation. The eddy conductivity is related to the eddy viscosity through a static turbulent Prandtl number which may be an arbitrary function of the distance from the wall boundary. The transitional boundary layer is treated by the inclusion of an intermittency function which modifies the fully turbulent model. The laminar-boundary-layer equations are recovered when the intermittency is zero, and the fully turbulent equations are solved when the intermittency is unity
Single pilot IFR accident data analysis
The aircraft accident data recorded and maintained by the National Transportation Safety Board for 1964 to 1979 were analyzed to determine what problems exist in the general aviation single pilot instrument flight rules environment. A previous study conducted in 1978 for the years 1964 to 1975 provided a basis for comparison. The purpose was to determine what changes, if any, have occurred in trends and cause-effect relationships reported in the earlier study. The increasing numbers have been tied to measures of activity to produce accident rates which in turn were analyzed in terms of change. Where anomalies or unusually high accident rates were encountered, further analysis was conducted to isolate pertinent patterns of cause factors and/or experience levels of involved pilots. The bulk of the effort addresses accidents in the landing phase of operations. A detailed analysis was performed on controlled/uncontrolled collisions and their unique attributes delineated. Estimates of day vs. night general aviation activity and accident rates were obtained
Out of equilibrium quantum field dynamics in external fields
The quantum dynamics of the symmetry broken \lambda (\Phi^2)^2 scalar field
theory in the presence of an homogeneous external field is investigated in the
large N limit. We consider an initial thermal state of temperature T for a
constant external field J. A subsequent sign flip of the external field, J to
-J, gives rise to an out of equilibrium nonperturbative quantum field dynamics.
We review here the dynamics for the symmetry broken lambda(\Phi^2)^2 scalar N
component field theory in the large N limit, with particular stress in the
comparison between the results when the initial temperature is zero and when it
is finite. The presence of a finite temperature modifies the dynamical
effective potential for the expectation value, and also makes that the
transition between the two regimes of the early dynamics occurs for lower
values of the external field. The two regimes are characterized by the presence
or absence of a temporal trapping close to the metastable equilibrium position
of the potential. In the cases when the trapping occurs it is shorter for
larger initial temperatures.Comment: LaTeX, 3 pages, 2 figures. Presented at the IVth International
Conference on Quarks and Nuclear Physics (QNP06). Selected to appear in Eur.
Phys. J.
Recommended from our members
Imaging the atomic structure of activated carbon
The precise atomic structure of activated carbon is unknown, despite its huge commercial importance in the purification of air and water. Diffraction methods have been extensively applied to the study of microporous carbons, but cannot provide an unequivocal identification of their structure. Here we show that the structure of a commercial activated carbon can be imaged directly using aberration-corrected transmission electron microscopy. Images are presented both of the as-produced carbon and of the carbon following heat treatment at 2000 degrees C. In the 2000 degrees C carbon clear evidence is found for the presence of pentagonal rings, suggesting that the carbons have a fullerene-related structure. Such a structure would help to explain the properties of activated carbon, and would also have important implications for the modelling of adsorption on microporous carbons
Recommended from our members
Novel bilayer graphene structures produced by arc-discharge
A new form of carbon is described, which consists of hollow, three-dimensional shells bounded by bilayer graphene. The new carbon is produced very simply, by passing a current through graphite rods in a commercial arc-evaporation unit. Characterisation of the carbon using high resolution transmission electron microscopy is described, and the possible formation mechanism discussed
On the absence of Shapiro-like steps in certain mesoscopic S-N-S junctions
In DC transport through mesoscopic S-N-S junctions, it is known that the
Josephson coupling decreases exponentially with increasing temperature, but the
phase dependence of the conductance persists to much higher temperatures and
decreases only as 1/T. It is pointed out here that, despite the fact that such
a phase-dependent conductance does bring about an AC current for a pure DC
voltage, it cannot, by itself, lead to the formation of Shapiro steps.Comment: 1 page, to be published in PRL (as Comment
- …