19 research outputs found
Genetic Predictions of Prion Disease Susceptibility in Carnivore Species Based on Variability of the Prion Gene Coding Region
Mammalian species vary widely in their apparent susceptibility to prion diseases. For example, several felid species developed prion disease (feline spongiform encephalopathy or FSE) during the bovine spongiform encephalopathy (BSE) epidemic in the United Kingdom, whereas no canine BSE cases were detected. Whether either of these or other groups of carnivore species can contract other prion diseases (e.g. chronic wasting disease or CWD) remains an open question. Variation in the host-encoded prion protein (PrP(C)) largely explains observed disease susceptibility patterns within ruminant species, and may explain interspecies differences in susceptibility as well. We sequenced and compared the open reading frame of the PRNP gene encoding PrP(C) protein from 609 animal samples comprising 29 species from 22 genera of the Order Carnivora; amongst these samples were 15 FSE cases. Our analysis revealed that FSE cases did not encode an identifiable disease-associated PrP polymorphism. However, all canid PrPs contained aspartic acid or glutamic acid at codon 163 which we propose provides a genetic basis for observed susceptibility differences between canids and felids. Among other carnivores studied, wolverine (Gulo gulo) and pine marten (Martes martes) were the only non-canid species to also express PrP-Asp163, which may impact on their prion diseases susceptibility. Populations of black bear (Ursus americanus) and mountain lion (Puma concolor) from Colorado showed little genetic variation in the PrP protein and no variants likely to be highly resistant to prions in general, suggesting that strain differences between BSE and CWD prions also may contribute to the limited apparent host range of the latter
Ethnobotany of the Tewa Indians,
"Forms a part of the results of the ethnological and archeological research in the upper Rio Grande valley of New Mexico, undertaken jointly by the Bureau of American ethnology and the School of American archæology in 1910 and 1911."--Letter to submittal, p. v.Bibliography: p. 119-120.Mode of access: Internet
Recommended from our members
Tightly Bunched Herding Improves Cattle Performance in African Savanna Rangeland
Rotational grazing management approaches are regarded as strategies for sustaining rangeland productivity and continue to be applied across many parts of the world. In Africa, livestock farmers implementing rotational grazing often switch from traditional loosely bunched herding (LBH), in which animals within a herd are allowed to spread out naturally when foraging, to tightly bunched herding (TBH) with limited herd spread to increase animal impact on the range. However, there is little scientific information on the actual direct (short-term) effects of this altered herding strategy on livestock productivity. We investigated the direct effects of TBH versus LBH on foraging behavior, nutrition, and performance (weight gain) of cattle in a semiarid savanna rangeland in central Kenya. We conducted the study across two habitat types: a heterogeneous red soil habitat and a relatively homogeneous black cotton soil habitat. Across both habitats, cattle traveled 9–15% less, foraged 10–29% more efficiently, and put on 14–39% more weight when managed with TBH as compared with LBH. These changes occurred despite the fact that stock densities were double to several times higher under TBH, and cattle under this herding regime foraged less selectively, consuming preferred plants less (especially in the black cotton soil habitat) and consuming diets with lower crude protein content (in the red soil habitat). Financial projection showed that the benefit of increased cattle performance under TBH could sufficiently outweigh increased cost of additional labor required to implement this herding strategy. These findings suggest that TBH, as practiced here, can be implemented without livestock production or financial losses. Further, the research demonstrated reduced grazing selectivity under TBH indicates that this herding strategy could potentially be used to reduce grazing pressure on preferred forage plants and maintain herbaceous species diversity without sacrificing cattle performance.The Rangeland Ecology & Management archives are made available by the Society for Range Management and the University of Arizona Libraries. Contact [email protected] for further information