526 research outputs found

    Current Practice in Vitamin D Management in Allogeneic Hematopoietic Stem Cell Transplantation: A Survey by the Transplant Complications Working Party of the European Society for Blood and Marrow Transplantation

    Get PDF
    Beyond its impact on bone health, numerous studies have investigated the immune-regulatory properties of vitamin D and shown how its deficiency can affect outcomes in allogeneic hematopoietic stem cell transplantation (HSCT), particularly in acute or chronic graft-versus-host disease. This survey, carried out by the Transplant Complications Working Party of the European Society for Blood and Marrow Transplantation (EBMT), describes the current clinical practice discrepancies across the EBMT HSCT programs. We therefore recommend the development of evidence-based guidelines to standardize evaluation criteria and to harmonize the management of vitamin D deficiency in patients undergoing allogeneic HSCT

    Polarization due to rotational distortion in the bright star Regulus

    Get PDF
    This is the full published article (retrieved from the 6 months post-publication posting on arXiv) including the Methods and Supplementary Information sections: 33 pages, 10 figures, 8 tablesPolarization in stars was first predicted by Chandrasekhar [1] who calculated a substantial linear polarization at the stellar limb for a pure electron-scattering atmosphere. This polarization will average to zero when integrated over a spherical star but could be detected if the symmetry is broken, for example by the eclipse of a binary companion. Nearly 50 years ago, Harrington and Collins [2] modeled another way of breaking the symmetry and producing net polarization - the distortion of a rapidly rotating hot star. Here we report the first detection of this effect. Observations of the linear polarization of Regulus, with two different high-precision polarimeters, range from +42 parts-per-million (ppm) at a wavelength of 741 nm to -22 ppm at 395 nm. The reversal from red to blue is a distinctive feature of rotation-induced polarization. Using a new set of models for the polarization of rapidly rotating stars we find that Regulus is rotating at 96.5(+0.6/-0.8)% of its critical angular velocity for breakup, and has an inclination greater than 76.5 degrees. The rotation axis of the star is at a position angle of 79.5+/-0.7 degrees. The conclusions are independent of, but in good agreement with, the results of previously published interferometric observations of Regulus [3]. The accurate measurement of rotation in early-type stars is important for understanding their stellar environments [4], and course of their evolution [5].Peer reviewedFinal Accepted Versio

    Planetary Dynamics and Habitable Planet Formation In Binary Star Systems

    Full text link
    Whether binaries can harbor potentially habitable planets depends on several factors including the physical properties and the orbital characteristics of the binary system. While the former determines the location of the habitable zone (HZ), the latter affects the dynamics of the material from which terrestrial planets are formed (i.e., planetesimals and planetary embryos), and drives the final architecture of the planets assembly. In order for a habitable planet to form in a binary star system, these two factors have to work in harmony. That is, the orbital dynamics of the two stars and their interactions with the planet-forming material have to allow terrestrial planet formation in the habitable zone, and ensure that the orbit of a potentially habitable planet will be stable for long times. We have organized this chapter with the same order in mind. We begin by presenting a general discussion on the motion of planets in binary stars and their stability. We then discuss the stability of terrestrial planets, and the formation of potentially habitable planets in a binary-planetary system.Comment: 56 pages, 29 figures, chapter to appear in the book: Planets in Binary Star Systems (Ed. N. Haghighipour, Springer publishing company

    Importance of meteorological variables for aeroplankton dispersal in an urban environment

    Get PDF
    Passive wind dispersal is one of the major mechanisms through which organisms disperse and colonize new areas. The detailed comprehension of which factors affect this process may help to preserve its efficiency for years to come. This is especially important in the current context of climate change, which may seriously alter weather regimes that drive dispersal, and is crucial in urban contexts, where biodiversity is dramatically threatened by pollution and fragmentation of natural patches. Despite its interest, the analysis of factors affecting aeroplankton dispersal in urban environments is rare in literature. We sampled aeroplankton community uninterruptedly every 4 hours from 17th May to 19th September 2011 in the urban garden of Parco d'Orléans, within the campus of the University of Palermo (Sicily). Sampling was performed using a Johnson-Taylor suction trap with automatized sample storing. Weather variables were recorded at a local meteorological station. Overall, 11,739 insects were caught during the present study, about 60% of these belonged to the order Hymenoptera, with particular presence of families Agaonidae and Formicidae. The suction trap also captured specimens of very small size, and in some cases, species caught were new records for Italy. Composition and abundance of aeroplankton community was influenced by alternation day/night, as well as by daily fluctuations of climatic variables, for example fluctuating temperature . The diversity of samples was also studied and resulted higher when wind blew from the nearby green area. Our findings confirm that passive transport of arthropods strictly depends on weather conditions, and that the presence of natural areas within the urban environment significantly contribute to raise aeroplankton diversity, eventually fuelling overall biodiversity at a local scale. We discuss how climate change may affect future dispersal of these organisms

    Infrared radiation from an extrasolar planet

    Full text link
    A class of extrasolar giant planets - the so-called `hot Jupiters' - orbit within 0.05 AU of their primary stars. These planets should be hot and so emit detectable infrared radiation. The planet HD 209458b is an ideal candidate for the detection and characterization of this infrared light because it is eclipsed by the star. This planet has an anomalously large radius (1.35 times that of Jupiter), which may be the result of ongoing tidal dissipation, but this explanation requires a non-zero orbital eccentricity (~0.03), maintained by interaction with a hypothetical second planet. Here we report detection of infrared (24 micron) radiation from HD 209458b, by observing the decrement in flux during secondary eclipse, when the planet passes behind the star. The planet's 24 micron flux is 55 +/- 10 micro-Jy (1 sigma), with a brightness temperature of 1130 +/- 150 Kelvins, confirming the predicted heating by stellar irradiation. The secondary eclipse occurs at the midpoint between transits of the planet in front of the star (to within +/- 7 min, 1 sigma), which means that a dynamically significant orbital eccentricity is unlikely.Comment: to appear in Nature April 7, posted to Nature online March 23 (11 pages, 3 figures

    Melusin gene (ITGB1BP2) nucleotide variations study in hypertensive and cardiopathic patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Melusin is a muscle specific signaling protein, required for compensatory hypertrophy response in pressure-overloaded heart. The role of Melusin in heart function has been established both by loss and gain of function experiments in murine models. With the aim of verifying the hypothesis of a potential role of the Melusin encoding gene, <it>ITGB1BP2</it>, in the modification of the clinical phenotype of human cardiomyopathies, we screened the <it>ITGB1BP2 </it>gene looking for genetic variations possibly associated to the pathological phenotype in three selected groups of patients affected by hypertension and dilated or hypertrophic cardiomyopathy</p> <p>Methods</p> <p>We analyzed <it>ITGB1BP2 </it>by direct sequencing of the 11 coding exons and intron flanking sequences in 928 subjects, including 656 hypertensive or cardiopathic patients and 272 healthy individuals.</p> <p>Results</p> <p>Only three nucleotide variations were found in patients of three distinct families: a C>T missense substitution at position 37 of exon 1 causing an amino acid change from His-13 to Tyr in the protein primary sequence, a duplication (IVS6+12_18dupTTTTGAG) near the 5'donor splice site of intron 6, and a silent 843C>T substitution in exon 11.</p> <p>Conclusions</p> <p>The three variations of the <it>ITGB1BP2 </it>gene have been detected in families of patients affected either by hypertension or primary hypertrophic cardiomyopathy; however, a clear genotype/phenotype correlation was not evident. Preliminary functional results and bioinformatic analysis seem to exclude a role for IVS6+12_18dupTTTTGAG and 843C>T in affecting splicing mechanism.</p> <p>Our analysis revealed an extremely low number of variations in the <it>ITGB1BP2 </it>gene in nearly 1000 hypertensive/cardiopathic and healthy individuals, thus suggesting a high degree of conservation of the melusin gene within the populations analyzed.</p

    Traumatic brain injury as a risk factor for Alzheimer disease. Comparison of two retrospective autopsy cohorts with evaluation of ApoE genotype

    Get PDF
    BACKGROUND AND PURPOSE: The impact of traumatic brain injury (TBI) on the pathogenesis of Alzheimer disease (AD) is still controversial. The aim of our retrospective autopsy study was to assess the impact of TBE and ApoE allele frequency on the development of AD. MATERIAL AND METHODS: We examined 1. the incidence of AD pathology (Braak stageing, CERAD, NIA-Reagan Institute criteria) in 58 consecutive patients (mean age ± SD 77.0 ± 6.8 years) with residual closed TBI lesions, and 2. the frequency of TBI residuals in 57 age-matched autopsy proven AD cases. In both series, ApoE was evaluated from archival paraffin-embedded brain material. RESULTS: 1. TBE series: 12.1 % showed definite and 10.3% probable AD (mean age 77.6 and 75.2 years), only 2/13 with ApoEε3/4. From 45 (77.6%) non-AD cases (mean age 78.2 years), 3 had ApoEε3/4. The prevalence of 22.4% AD in this small autopsy cohort was significantly higher than 3.3% in a recent large clinical series and 14% in the general population over age 70. 2. In the AD cohort with ApoEε4 allele frequency of 30% similar to other AD series, residuals of closed TBI were seen in 4 brains (7%) (mean age ± SD 78.2 ± 6.4), all lacking the ApoEε4 allele. TBI incidence was slightly lower than 8.5% in the clinical MIRAGE study. CONCLUSIONS: The results of this first retrospective autopsy study of TBI, ApoEε allele frequency, and AD confirm clinical studies suggesting severe TBI to be a risk factor for the development AD higher in subjects lacking ApoEε4 alleles. Further studies in larger autopsy series are needed to elucidate the relationship between TBI, genetic predisposition, and AD
    • …
    corecore