19,396 research outputs found
Exact Random Walk Distributions using Noncommutative Geometry
Using the results obtained by the non commutative geometry techniques applied
to the Harper equation, we derive the areas distribution of random walks of
length on a two-dimensional square lattice for large , taking into
account finite size contributions.Comment: Latex, 3 pages, 1 figure, to be published in J. Phys. A : Math. Ge
Mg I emission lines at 12 and 18 micrometer in K giants
The solar Mg I emission lines at 12 micrometer have already been observed and
analyzed well. Previous modeling attempts for other stars have, however, been
made only for Procyon and two cool evolved stars, with unsatisfactory results
for the latter. We present high-resolution observational spectra for the K
giants Pollux, Arcturus, and Aldebaran, which show strong Mg I emission lines
at 12 micrometer as compared to the Sun. We also present the first observed
stellar emission lines from Mg I at 18 micrometer and from Al I, Si I, and
presumably Ca I at 12 micrometer. To produce synthetic line spectra, we employ
standard non-LTE modeling for trace elements in cool stellar photospheres. We
compute model atmospheres with the MARCS code, apply a comprehensive magnesium
model atom, and use the radiative transfer code MULTI to solve for the
magnesium occupation numbers in statistical equilibrium. We successfully
reproduce the observed Mg I emission lines simultaneously in the giants and in
the Sun, but show how the computed line profiles depend critically on atomic
input data and how the inclusion of energy levels with n > 9 and collisions
with neutral hydrogen are necessary to obtain reasonable fits.Comment: 9 pages, 6 figures, accepted for publication in Astronomy &
Astrophysic
Fluorine in the solar neighborhood - is it all produced in AGB-stars?
The origin of 'cosmic' fluorine is uncertain, but there are three proposed
production sites/mechanisms: AGB stars, nucleosynthesis in Type II
supernovae, and/or the winds of Wolf-Rayet stars. The relative importance of
these production sites has not been established even for the solar
neighborhood, leading to uncertainties in stellar evolution models of these
stars as well as uncertainties in the chemical evolution models of stellar
populations.
We determine the fluorine and oxygen abundances in seven bright, nearby
giants with well-determined stellar parameters. We use the 2.3 m
vibrational-rotational HF line and explore a pure rotational HF line at 12.2
m. The latter has never been used before for an abundance analysis. To be
able to do this we have calculated a line list for pure rotational HF lines. We
find that the abundances derived from the two diagnostics agree.
Our derived abundances are well reproduced by chemical evolution models only
including fluorine production in AGB-stars and therefore we draw the conclusion
that this might be the main production site of fluorine in the solar
neighborhood. Furthermore, we highlight the advantages of using the 12 m
HF lines to determine the possible contribution of the -process to the
fluorine budget at low metallicities where the difference between models
including and excluding this process is dramatic
TEXES Observations of M Supergiants: Dynamics and Thermodynamics of Wind Acceleration
We have detected [Fe II] 17.94 um and 24.52 um emission from a sample of M
supergiants using TEXES on the IRTF. These low opacity emission lines are
resolved at R = 50, 000 and provide new diagnostics of the dynamics and
thermodynamics of the stellar wind acceleration zone. The [Fe II] lines, from
the first excited term, are sensitive to the warm plasma where energy is
deposited into the extended atmosphere to form the chromosphere and wind
outflow. These diagnostics complement previous KAO and ISO observations which
were sensitive to the cooler and more extended circumstellar envelopes. The
turbulent velocities, Vturb is about 12 to 13 km/s, observed in the [Fe II]
forbidden lines are found to be a common property of our sample, and are less
than that derived from the hotter chromospheric C II] 2325 Angstrom lines
observed in alpha Ori, where Vturb is about 17 to 19 km/s. For the first time,
we have dynamically resolved the motions of the dominant cool atmospheric
component discovered in alpha Ori from multi-wavelength radio interferometry by
Lim et al. (1998). Surprisingly, the emission centroids are quite Gaussian and
at rest with respect to the M supergiants. These constraints combined with
model calculations of the infrared emission line fluxes for alpha Ori imply
that the warm material has a low outflow velocity and is located close to the
star. We have also detected narrow [Fe I] 24.04 um emission that confirms that
Fe II is the dominant ionization state in alpha Ori's extended atmosphere.Comment: 79 pages including 10 figures and 2 appendices. Accepted by Ap
Analytical and experimental study of stratification and liquid-ullage coupling, 1 June 1964 - 31 May 1965
Closed-form solution for stratification of subcooled fluids in containers subjected to heating, and for liquid-ullage vapor couplin
- ā¦