8 research outputs found

    Analysis of Yarrowia lipolytica Growth, Catabolism, and Terpenoid Biosynthesis during Utilization of Lipid-derived Feedstock

    Get PDF
    This study employs biomass growth analyses and 13C-isotope tracing to investigate lipid feedstock utilization by Yarrowia lipolytica. Compared to glucose, oil-feedstock in the minimal medium increases the yeast\u27s biomass yields and cell sizes, but decreases its protein content (\u3c20% of total biomass) and enzyme abundances for product synthesis. Labeling results indicate a segregated metabolic network (the glycolysis vs. the TCA cycle) during co-catabolism of sugars (glucose or glycerol) with fatty acid substrates, which facilitates resource allocations for biosynthesis without catabolite repressions. This study has also examined the performance of a β-carotene producing strain in different growth mediums. Canola oil-containing yeast-peptone (YP) has resulted in the best β-carotene titer (121 ± 13 mg/L), two-fold higher than the glucose based YP medium. These results highlight the potential of Y. lipolytica for the valorization of waste-derived lipid feedstock

    Ultraviolet A and B Wavelength-dependent Inactivation of Viruses and Bacteria in the Water

    No full text
    UVA and UVB can be applied to solar disinfection of water. In this study, the inactivation and photoreactivation of viruses and bacteria in the UVA-B range were analyzed. MS2 and T4 bacteriophages, and Escherichia coli were used as surrogates to quantify dose-response behaviors. Inactivation in UVC was used to validate the methodology and to expand the inactivation action spectra. The results showed log-linear inactivation for MS2 and T4 in the 254–320 nm wavelength range. T4 inactivation was consistently faster than MS2 (except at 320 nm), and for both phages, inactivation decreased with increasing wavelength. The dose-response of bacteria exhibited a lag at low doses, possibly because the photons must strike a discrete number of critical targets before growth stops. A tail was present at high doses for some wavelengths, perhaps due to clumping or the presence of subgroups with higher resistance. The inactivation action spectra for bacteria exhibited a reduction in inactivation as wavelength increased. No bacterial inactivation was observed beyond 320 nm at doses applied. After inactivation at 297 nm (UVA), bacteria regained viability through photoreactivation, and repair increased with increase in photoreactivating light exposure time. This implies additional doses above inactivation thresholds are required to cause irreversible damage. These results are useful for designing solar disinfection systems

    The Effect of Mixing and Free-floating Carrier Media on Bioaerosol Release from Wastewater: A Multiscale Investigation with Bacillus globigii

    No full text
    Aeration tanks in wastewater treatment plants (WWTPs) are significant sources of bioaerosols, which contain microbial contaminants and can travel miles from the site of origin, risking the health of operators and the general public. One potential mitigation strategy is to apply free-floating carrier media (FFCM) to suppress bioaerosol emission. This article presents a multiscale study on the effects of mixing and FFCM on bioaerosol release using Bacillus globigii spores in well-defined liquid media

    Comparison of Continuous versus Pulsed Ultraviolet Light Emitting Diode Use for the Inactivation of \u3ci\u3eBacillus globigii\u3c/i\u3e Spores

    No full text
    Light emitting diodes (LEDs) in the ultraviolet (UV) range offer a promising alternative for the disinfection of water. LEDs have many advantages over conventional UV lamps but there are concerns related to the operating life of the LED lamps. In this project Bacillus globigii was inactivated using UV LED technology. The experimental strategy included using pulsed ultraviolet (PUV) output rather than continuous UV (CUV) current in order to reduce the power requirements and extend the life of the lamps. The kinetic profiles for CUV experiments reached 6-log inactivation faster than PUV at 9.1% duty cycle (approx. 840 vs. 5,000 s) but the PUV required lower fluence (365 vs. 665 J/m2). In addition, the inactivation rate constants associated with PUV were generally higher than those of CUV (4.6–5.1 vs. 3.6–4.4 m2/J), which supports the notion that high energy bursts are more effective at causing cellular damage. Multi-target kinetics applied to most of the kinetic observations and tailing effects were generally observed. PUV LED appears to have potential to extend the lifetime of the LEDs for inactivation of spore-forming pathogens

    Impact of Carbon Sources on Nitrous Oxide Emission and Microbial Community Structure in an Anoxic/oxic Activated Sludge System

    No full text
    The carbon source used for denitrification is a key factor in the reduction of nitrous oxide (N2O) produced from wastewater treatment plants because it affects denitrification activity. In this study, two laboratory-scale Modified Ludzak Ettinger (MLE) processes were operated with methanol and sodium acetate as the sole carbon sources. Removal efficiency of soluble nitrogen was not affected by carbon source, but the N2O emission rate from the acetate-fed MLE process (1.6 ± 0.6 μg N–N2O/min) was lower than that from the methanol-fed process (3.0 ± 0.7 μg N–N2O/min). This is supported by the batch experiment data showing the acetate-fed biomass had a higher N2O reduction rate of 10.3 mg/gVSS/h than that of the methanol-fed biomass (3.3 mg/gVSS/h). In the methanol-fed process, 34.9 % of the total bacteria was the genus Methylotenera, which is reportedly incapable of N2O reduction. The acetate-fed process enriched the genera Dechloromonas and Rubrivivax, potential N2O reducers, accounting for 12.2 and 15.9 % of the total bacteria, respectively. The results indicated that acetate is a suitable replacement for methanol for wastewater treatment plants interested in mitigating N2O emission from the MLE process.Abstract (c) Springe

    Oxidation of Tartrazine with Ultraviolet Light Emitting Diodes: PH and Duty Cycles Effects

    No full text
    The presence of tartrazine (TAR) in the water cycle poses serious threats to human health. This study investigated the used of light emitting diodes (LEDs) in the advanced oxidation of TAR under different pH and duty cycle (DC) conditions. The first order reaction rate constant for TAR oxidation was positively correlated with DC, negatively correlated with pH, and typically greatest at pH 6. Chemical byproduct analysis indicated that OH addition, H abstraction, and electron transfer without molecule transfer were among the relevant reaction mechanisms for TAR degradation. Six byproducts were identified, four were reported for the first time, and two demonstrated that TAR rings were cleaved. This research is the first to determine the optimal pH for UVLED-driven oxidation of TAR and the first to identify new TAR-related byproducts from UVLED-based water treatment

    The Effect of Hydroxylamine on the Activity and Aggregate Structure of Autotrophic Nitrifying Bioreactor Cultures

    No full text
    International audienceAddition of hydroxylamine (NH2OH) to autotrophic biomass in nitrifying bioreactors affected the activity, physical structure, and microbial ecology of nitrifying aggregates. When NH2OH is added to nitrifying cultures in 6-h batch experiments, the initial NH3-N uptake rates were physiologically accelerated by a factor of 1.4–13. NH2OH addition caused a 20–40% decrease in the median aggregate size, broadened the shape of the aggregate size distribution by up to 230%, and caused some of the microcolonies to appear slightly more dispersed. Longer term NH2OH addition in fed batch bioreactors decreased the median aggregate size, broadened the aggregate size distribution, and decreased NH3-N removal from >90% to values ranging between 75% and 17%. This altered performance is explained by quantitative fluorescence in situ hybridization (FISH) results that show inhibition of nitrifying populations, and by qPCR results showing that the copy numbers of amoA and nxrA genes gradually decreased by up to an orderof- magnitude. Longer term NH2OH addition damaged the active biomass. This research clarifies the effect of NH2OH on nitrification and demonstrates the need to incorporate NH2OH-related dynamics of the nitrifying biomass into mathematical models, accounting for both ecophysiological and structural response

    Hyperspectral Analysis for Standoff Detection of Dimethyl Methylphosphonate on Building Materials

    No full text
    Detecting organophosphates in indoor settings can greatly benefit from more efficient and faster methods of surveying large surface areas than conventional approaches, which sample small surface areas followed by extraction and analysis. This study examined a standoff detection technique utilizing hyperspectral imaging for analysis of building materials in near-real time. In this proof-of-concept study, dimethyl methylphosphonate (DMMP) was applied to stainless steel and laminate coupons and spectra were collected during active illumination. Absorbance bands at approximately 1275 cm−1 and 1050 cm−1 were associated with phosphorus-oxygen double bond (P=O) and phosphorus-oxygen-carbon (P-O-C) bond stretches of DMMP, respectively. The magnitude of these bands increased linearly (r2 = 0.93) with DMMP across the full absorbance spectrum, between ν1 = 877 cm−1 to ν2 = 1262 cm−1. Comparisons between bare and contaminated surfaces on stainless steel using the spectral contrast angle technique indicated that the bare samples showed no sign of contamination, with large uniformly distributed contrast angles of 45°-55°, while the contaminated samples had smaller spectral contact angles of \u3c 20° in the contaminated region and \u3e 40° in the uncontaminated region. The laminate contaminated region exhibited contact angles of \u3c 25°. To the best of our knowledge, this is the first report to demonstrate that hyperspectral imaging can be used to detect DMMP on building materials, with detection levels similar to concentrations expected for some organophosphate deposition scenarios
    corecore