28 research outputs found

    Parasite excretory-secretory products and their effects on metabolic syndrome

    Get PDF
    Obesity, one of the main causes of metabolic syndrome (MetS), is an increasingly common health and economic problem worldwide, and one of the major risk factors for developing type 2 diabetes and cardiovascular disease. Chronic, low-grade inflammation is associated with MetS and obesity. A dominant type 2/anti-inflammatory response is required for metabolic homeostasis within adipose tissue: during obesity, this response is replaced by infiltrating, inflammatory macrophages and T cells. Helminths and certain protozoan parasites are able to manipulate the host immune response towards a TH2 immune phenotype that is beneficial for their survival and there is emerging data that there is an inverse correlation between the incidence of MetS and helminth infections, suggesting that, as with autoimmune and allergic diseases, helminths may play a protective role against MetS disease. Within this review, we will focus primarily on the excretory-secretory products that the parasites produce to modulate the immune system and discuss their potential use as therapeutics against MetS and its associated pathologies

    Testing small molecule analogues of acanthocheilonema viteae immunomodulator ES-62 against clinically relevant allergens

    Get PDF
    ES-62 is a glycoprotein secreted by the filarial nematode Acanthocheilonema viteae that protects against ovalbumin (OVA)-induced airway hyper-responsiveness in mice by virtue of covalently attached anti-inflammatory phosphorylcholine (PC) residues. We have recently generated a library of Small Molecule Analogues (SMAs) of ES-62 based around its active PC moiety as a starting point in novel drug development for asthma, and isolated two compounds - termed 11a and 12b – that mirror ES-62’s protective effects. In the present study we have moved away from OVA, a model allergen, to test the two SMAs against two clinically relevant allergens – house dust mite (HDM) and cockroach allergen (CR) extract. We show that whereas both SMAs offer some protection against development of lung allergic responses to CR, in particular reducing eosinophil infiltration, only SMA 12b is effective in protecting against eosinophil-dependent HDM-induced allergy. These data therefore suggest that helminth molecule-induced protection against model antigens may not necessarily translate to clinically relevant antigens. Nevertheless, in the present study we have managed to demonstrate that it is possible to produce synthetic drug-like molecules based on a parasitic worm product that show therapeutic potential with respect to asthma resulting from known triggers in humans

    Leukocytes are primed in peripheral blood for activation during term and preterm labour†

    Get PDF
    We hypothesized that the priming and activation of maternal leukocytes in peripheral blood is a key component of parturition, and that inappropriate preterm priming of leukocytes might initiate preterm labour and delivery. The purpose of this study was to characterize peripheral blood leukocyte activation during human term and preterm labour. We obtained blood samples from pregnant women at term and preterm, both in labour and not in labour. Leukocytes were characterized according to cell subtype and cell surface marker expression. Additionally, we quantified leukocyte cytokine mRNA production, migratory ability and reactive oxygen species production of neutrophils and macrophages. We found that both term and preterm labour were associated with an increase in monocyte and neutrophil proportion or number—neutrophil migratory ability and cell surface marker expression indicating activation. Messenger RNA expression of IL-1β and IL-8, MCP-1 and TLR-2 was also increased. We conclude that leukocytes in peripheral blood are primed in preparation for activation during term and preterm labour, and that this may contribute to the pathophysiological events of parturition. These data may lead to novel therapies and diagnostic tools for the prevention and/or diagnosis of preterm birth

    Immunomodulatory activity and therapeutic potential of the filarial nematode secreted product, ES-62

    No full text
    ES-62 is a protein that is actively secreted by filarial nematodes during parasitism of the vertebrate host. The molecule is able to directly interact with a number of cells of the immune system including B-lymphocytes, dendritic cells, macrophages and mast cells. Interaction appears to be dependent on complexing with TLR4 and results in modulation of the activity of a number of signal transduction molecules including MAP kinases, PI-3 kinase and NF-kappaB. Immunomodulatory activity of ES-62 appears to be largely due to the presence of phosphorylcholine (PC) moieties covalently attached to N-type glycans. The net effect of ES-62's interaction with the immune system is the generation of an anti-inflammatory immunological phenotype. As a consequence of this, ES-62 demonstrates striking drug-like activity in models of disease associated with aberrant inflammation, in particular those associated with autoimmunity and allergy

    Therapeutic immunomodulaors from nematode parasites

    No full text
    There has been an alarming increase in the incidence of autoimmune and allergic diseases in Western countries in the past few decades. However, in countries endemic for parasitic helminth infections, such diseases remain relatively rare. Hence, it has been hypothesised that helminths may protect against the development of autoimmunity and allergy. This article reviews the evidence supporting this idea with respect to helminths of the phylum Nematoda (nematodes), considering data from human studies and animal models of inflammatory disease. The nature and mode of action of nematode-derived molecules with immunomodulatory properties are considered, and their therapeutic efficacy in models of autoimmunity and allergy described. The recent and future use of nematodes and their products in treating human disease are also discussed

    Modulation of the host immune system by phosphorylcholine-containing glycoproteins secreted by parasitic filarial nematodes

    Get PDF
    AbstractPhosphorylcholine (PC) is increasingly becoming recognised as a carbohydrate-associated component of a wide variety of procaryotic and eucaryotic pathogens. Studies employing nematode PC-containing molecules indicate that it possesses a plethora of immunomodulatory activities. ES-62 is a PC-containing glycoprotein, which is secreted by the rodent filarial nematode Acanthocheilonema viteae and which provides a model system for the dissection of the mechanisms of immune evasion induced by related PC-containing glycoproteins expressed by human filarial nematodes. At concentrations equivalent to those found for PC-containing molecules in the bloodstream of parasitised humans, ES-62 is able to inhibit antigen receptor-stimulated proliferation of B and T lymphocytes in vitro and in vivo. The active component of ES-62 appears to be PC, as PC conjugated to albumin or even PC alone broadly mimic the results obtained with ES-62. PC-induced impaired lymphocyte responsiveness appears to reflect uncoupling of the antigen receptors from key intracellular proliferative signalling events such as the phosphoinositide 3-kinase, protein kinase C and Ras mitogen-activating protein kinase pathways. Although PC-ES-62 can desensitise B and T cells, not all cells are affected, and in fact it is still possible to generate an antibody response to the molecule. Dissection of this response indicates that it is of the TH-2 type. This appears to reflect the ability of ES-62 to direct the polarity of the T cell response by suppressing the production of proinflammatory cytokines, inducing the induction of anti-inflammatory cytokines and by driving the maturation of dendritic cells that direct TH-2 T cell responses

    Structural/functional aspects of ES-62 - A secreted immunomodulatory phosphorylcholine-containing filarial nematode glycoprotein

    No full text
    ES-62 is a major secreted glycoprotein of the rodent filarial nematode Acanthocheilonema viteae and homologue of molecules found in filarial nematodes which parasitise humans. The molecule consists of a tetramer of apparently identical monomers of ∼62 kDa which we have shown by sedimentation equilibrium analytical ultracentrifugation to strongly associate. ES-62 is one of several filarial nematode proteins to contain the unusual posttranslational modification of phosphorylcholine (PC) addition. Specifically, we have found that PC is attached to one of three distinct N-type glycans we have characterised on the molecule. The amino acid sequence of ES-62 shows 37-39% identity with a family of 6 other proteins, some of which have been predicted to be amino- or carboxy-peptidases. We have also found that ES-62 is able to interact with a number of cells of the immune system, specifically B- and Tlymphocytes, macrophages and dendritic cells. Lymphocytes exposed to ES-62 in vitro or in vivo are less able to proliferate in response to ligation via the antigen receptor. Peritoneal macrophages pre-exposed to the molecule are less able to produce the cytokines IL-12, IL-6 and TNF-α following subsequent incubation with the classical stimulators IFNγ and LPS. Dendritic cells allowed to mature in the presence of ES-62 acquire a phenotype, which allows them to induce anti-inflammatory “TH2-type” responses. With respect to immunomodulation, the PC moiety of the parasite molecule appears to be predominantly responsible for the effects on lymphocyte proliferation at least and we have also found that its removal converts the murine IgG antibody response to ES-62 from solely IgG1 to mixed IgG1 / IgG2a. ES-62 appears to interact with cells of the immune system in a PC-dependent manner and, at least in part, via a molecule of ∼82 kDa. Studies of the interaction in lymphocytes show that it is associated with activation of certain signal transduction molecules including a number of protein tyrosine kinases and mitogen activated protein kinases (MAPkinases). Although such activation is insufficient to induce proliferation, it serves to almost completely desensitise the cells to antigenreceptor ligation-induced activation of the phosphoinositide 3-kinase (PI-3-kinase) and Ras / MAPkinase pathways, events critical for lymphocyte proliferation. Such desensitisation reflects ES-62-primed recruitment of a number of negative regulators of these pathways, such as the phosphatases SHP-1 and Pac-1

    The anti-inflammatory potential of the filarial nematode secreted product, ES-62

    No full text
    Filarial nematodes achieve long-term infection via modulation of the host immune system. Although human infection can result in severe pathology, the majority of infected individuals exhibit little evidence of this. Analysis of the immune response during infection indicates that the apparently healthy majority have an anti-inflammatory phenotype and it has been speculated that this may contribute to maintenance of host health. Recent data suggest that parasite-derived molecular secretions contribute to the anti-inflammatory phenotype and we have thus characterised a major filarial nematode secreted glycoprotein, ES-62. This molecule has been found to possess broad immunomodulatory activities that are in general, anti-inflammatory. It has long been recognised that several autoimmune disorders including rheumatoid arthritis (RA) exhibit reduced incidence and severity in geographic regions in which filarial nematodes are endemic. Furthermore, it has been speculated that these two observations are causally linked. However, molecular explanations for such an association have not been forthcoming. Although the aetiology of RA is unknown most data suggest that it is mediated via a pro-inflammatory immune response associated with excess cytokine production. Given that ES-62 is anti-inflammatory, we hypothesised that it might possess activity against diseases like RA. Indeed we found that subcutaneous injection of ES-62 prevented initiation of collagen-induced arthritis (CIA) and also suppressed progression of established disease. Ex vivo analyses demonstrated that these effects were due to inhibition of TNF-alpha production and reversal of collagen specific TH-1 responses. The nematode product was also found to inhibit pro-inflammatory cytokine release in vitro in synovial cells derived from RA patients.ES-62 thus represents a parasite-derived immunomodulator with significant therapeutic potential

    Cellular homeostasis: cell growth and cancer

    No full text

    Cyclic nucleotide signalling throughout T cell maturation

    No full text
    corecore