5 research outputs found

    Deep Synoptic Array Science: Polarimetry of 25 New Fast Radio Bursts Provides Insights into their Origins

    Full text link
    We report on a full-polarization analysis of the first 25 as yet non-repeating FRBs detected at 1.4 GHz by the 110-antenna Deep Synoptic Array (DSA-110) during commissioning observations. We present details of the data reduction, calibration, and analysis procedures developed for this novel instrument. The data have 32 μ\mus time resolution and sensitivity to Faraday rotation measures (RMs) between ±106\pm10^{6} rad m−2^{-2}. RMs are detected for 20 FRBs with magnitudes ranging from 4−46704-4670 rad m−2^{-2}. 9/259/25 FRBs are found to have high (≥70%\ge 70\%) linear-polarization fractions. The remaining FRBs exhibit significant circular polarization (3/253/25), or are either partially depolarized (8/258/25) or unpolarized (5/255/25). We investigate the mechanism of depolarization, disfavoring stochastic RM variations within a scattering screen as a dominant cause. Polarization-state and possible RM variations are observed in the four FRBs with multiple sub-components, but only one other FRB shows a change in polarization state. We combine the DSA-110 sample with polarimetry of previously published FRBs, and compare the polarization properties of FRB sub-populations and FRBs with Galactic pulsars. Although FRBs are typically far more polarized than the average profiles of Galactic pulsars, and exhibit greater spread in polarization fractions than pulsar single pulses, we find a remarkable similarity between FRB polarization fractions and the youngest (characteristic ages <105<10^{5} yr) pulsars. Our results support a scenario wherein FRB emission is intrinsically highly linearly polarized, and where propagation effects within progenitor magnetospheres can result in conversion to circular polarization and depolarization. Young pulsar emission and magnetospheric-propagation geometries may form a useful analogy for the origin of FRB polarization.Comment: 43 pages, 17 figure

    Deep Synoptic Array Science: Implications of Faraday Rotation Measures of Localized Fast Radio Bursts

    Full text link
    Faraday rotation measures (RMs) of fast radio bursts (FRBs) offer the prospect of directly measuring extragalactic magnetic fields. We present an analysis of the RMs of ten as yet non-repeating FRBs detected and localized to host galaxies by the 110-antenna Deep Synoptic Array (DSA-110). We combine this sample with published RMs of 15 localized FRBs, nine of which are repeating sources. For each FRB in the combined sample, we estimate the host-galaxy dispersion measure (DM) contributions and extragalactic RM. We find compelling evidence that the extragalactic components of FRB RMs are often dominated by contributions from the host-galaxy interstellar medium (ISM). Specifically, we find that both repeating and as yet non-repeating FRBs show a correlation between the host-DM and host-RM in the rest frame, and we find an anti-correlation between extragalactic RM (in the observer frame) and redshift for non-repeaters, as expected if the magnetized plasma is in the host galaxy. Important exceptions to the ISM origin include a dense, magnetized circum-burst medium in some repeating FRBs, and the intra-cluster medium (ICM) of host or intervening galaxy clusters. We find that the estimated ISM magnetic-field strengths, B∣∣B_{||}, are characteristically larger than those inferred from Galactic radio pulsars. This suggests either increased ISM magnetization in FRB hosts in comparison with the Milky Way, or that FRBs preferentially reside in regions of increased magnetic-field strength within their hosts

    Deep Synoptic Array science I: discovery of the host galaxy of FRB 20220912A

    Full text link
    We report the detection and interferometric localization of the repeating fast radio burst (FRB) source FRB 20220912A during commissioning observations with the Deep Synoptic Array (DSA-110). Two bursts were detected from FRB 20220912A, one each on 2022 October 18 and 2022 October 25. The best-fit position is (R.A. J2000, decl. J2000) = (23:09:04.9, +48:42:25.4), with a 90% confidence error ellipse of ±2\pm2 arcsec and ±1\pm1 arcsec in right ascension and declination respectively. The two bursts have disparate polarization properties and temporal profiles. We find a Faraday rotation measure that is consistent with the low value of +0.6+0.6 rad m−2^{-2} reported by CHIME/FRB. The DSA-110 localization overlaps with the galaxy PSO J347.2702+48.7066 at a redshift z=0.0771z=0.0771, which we identify as the likely host. PSO J347.2702++48.7066 has a stellar mass of approximately 1010M⊙10^{10}M_{\odot}, modest internal dust extinction, and a star-formation rate likely in excess of 0.1 M⊙0.1\,M_{\odot} yr−1^{-1}. The host-galaxy contribution to the dispersion measure is likely ≲50\lesssim50 pc cm−3^{-3}. The FRB 20220912A source is therefore likely viewed along a tenuous plasma column through the host galaxy.Comment: 10 pages, 7 figures, 2 tables, submitted to AAS Journal

    Deep Synoptic Array Science: Implications of Faraday Rotation Measures of Fast Radio Bursts Localized to Host Galaxies

    Full text link
    Faraday rotation measures (RMs) of fast radio bursts (FRBs) offer the prospect of directly measuring extragalactic magnetic fields. We present an analysis of the RMs of 10 as yet nonrepeating FRBs detected and localized to host galaxies with robust redshift measurements by the 63-antenna prototype of the Deep Synoptic Array (DSA-110). We combine this sample with published RMs of 15 localized FRBs, nine of which are repeating sources. For each FRB in the combined sample, we estimate the host-galaxy dispersion measure (DM) contributions and extragalactic RM. We find compelling evidence that the extragalactic components of FRB RMs are often dominated by contributions from the host-galaxy interstellar medium (ISM). Specifically, we find that both repeating and as yet nonrepeating FRBs show a correlation between the host DM and host RM in the rest frame, and we find an anticorrelation between extragalactic RM (in the observer frame) and redshift for nonrepeaters, as expected if the magnetized plasma is in the host galaxy. Important exceptions to the ISM origin include a dense, magnetized circumburst medium in some repeating FRBs, and the intracluster medium of host or intervening galaxy clusters. We find that the estimated ISM magnetic-field strengths, Bˉ∣∣{\bar{B}}_{| | } , are characteristically ∼1–2 μ G larger than those inferred from Galactic radio pulsars. This suggests either increased ISM magnetization in FRB hosts in comparison with the Milky Way, or that FRBs preferentially reside in regions of increased magnetic-field strength within their hosts

    Deep Synoptic Array Science: A Massive Elliptical Host Among Two Galaxy-cluster Fast Radio Bursts

    Full text link
    The stellar population environments that are associated with fast radio burst (FRB) sources provide important insights for developing their progenitor theories. We expand the diversity of known FRB host environments by reporting two FRBs in massive galaxy clusters that were discovered by the Deep Synoptic Array (DSA-110) during its commissioning observations. FRB 20220914A has been localized to a star-forming, late-type galaxy at a redshift of 0.1139 with multiple starbursts at lookback times less than ∼3.5 Gyr in the A2310 galaxy cluster. Although the host galaxy of FRB 20220914A is similar to typical FRB hosts, the FRB 20220509G host stands out as a quiescent, early-type galaxy at a redshift of 0.0894 in the A2311 galaxy cluster. The discovery of FRBs in both late- and early-type galaxies adds to the body of evidence that the FRB sources have multiple formation channels. Therefore, even though FRB hosts are typically star-forming, there must exist formation channels that are consistent with old stellar population in galaxies. The varied star formation histories of the two FRB hosts that we report here indicate a wide delay-time distribution of FRB progenitors. Future work in constraining the FRB delay-time distribution, using the methods that we develop herein, will prove crucial in determining the evolutionary histories of FRB sources
    corecore