2,154 research outputs found

    Many-Spin Effects and Tunneling Properties of Magnetic Molecules

    Full text link
    Spin tunneling in molecular magnets has attracted much attention, however theoretical considerations of this phenomenon up to now have not taken into account the many-spin nature of molecular magnets. We present, to our knowledge, the first successful attempt of a realistic calculation of tunneling splittings for Mn12_{12} molecules, thus achieving a quantitatively accurate many-spin description of a real molecular magnet in the energy interval ranging from about 100 K down to 10−12^{-12} K. Comparison with the results of the standard single-spin model shows that many-spin effects affect the tunneling splittings considerably. The values of ground state splitting given by single-spin and many-spin models differ from each other by a factor of five.Comment: 3REVTeX pages, 2 figure

    Isogrid design handbook

    Get PDF
    Handbook has been published which presents information needed for design of isogrid triangular integral-stiffened structures. It develops equations, methods, and graphs to handle wide variety of loadings, materials, and geometry. Handbook is divided into seven sections. Handbook may be used by marine and civil engineers and by students and designers without access to computers

    Sequences within the C terminus of the metabotropic glutamate receptor 5 (mGluR5) are responsible for inner nuclear membrane localization

    Get PDF
    Traditionally, G-protein-coupled receptors (GPCR) are thought to be located on the cell surface where they transmit extracellular signals to the cytoplasm. However, recent studies indicate that some GPCRs are also localized to various subcellular compartments such as the nucleus where they appear required for various biological functions. For example, the metabotropic glutamate receptor 5 (mGluR5) is concentrated at the inner nuclear membrane (INM) where it mediates Ca(2+) changes in the nucleoplasm by coupling with G(q/11). Here, we identified a region within the C-terminal domain (amino acids 852–876) that is necessary and sufficient for INM localization of the receptor. Because these sequences do not correspond to known nuclear localization signal motifs, they represent a new motif for INM trafficking. mGluR5 is also trafficked to the plasma membrane where it undergoes re-cycling/degradation in a separate receptor pool, one that does not interact with the nuclear mGluR5 pool. Finally, our data suggest that once at the INM, mGluR5 is stably retained via interactions with chromatin. Thus, mGluR5 is perfectly positioned to regulate nucleoplasmic Ca(2+) in situ

    GPU accelerated RBF-FD solution of Poisson's equation

    Full text link
    The Radial Basis Function-generated finite differences became a popular variant of local meshless strong form methods due to its robustness regarding the position of nodes and its controllable order of accuracy. In this paper, we present a GPU accelerated numerical solution of Poisson's equation on scattered nodes in 2D for orders from 2 up to 6. We specifically study the effect of using different orders on GPU acceleration efficiency

    Effect of ligand substitution on the exchange interactions in {Mn12}-type single-molecule magnets

    Full text link
    We investigate how the ligand substitution affects the intra-molecular spin exchange interactions, studying a prototypal family of single-molecule magnets comprising dodecanuclear cluster molecules [Mn12O12(COOR)16]. We identify a simple scheme based on accumulated Pauling electronegativity numbers (a.e.n.) of the carboxylate ligand groups (R). The redistribution of the electron density, controlled by a.e.n. of a ligand, changes the degree of hybridization between 3d electrons of manganese and 2p electrons of oxygen atoms, thus changing the exchange interactions. This scheme, despite its conceptual simplicity, provides a strong correlation with the exchange energies associated with carboxylate bridges, and is confirmed by the electronic structure calculations taking into account the Coulomb correlations in magnetic molecules.Comment: 18 pages, 1 table, 4 figures. Accepted to "Inorganic Chemistry
    • …
    corecore