16 research outputs found

    Marine Reserves Shape Seascapes on Scales Visible From Space

    Get PDF
    Marine reserves can effectively restore harvested populations, and ‘mega-reserves’ increasingly protect large tracts of ocean. However, no method exists of monitoring ecological responses at this large scale. Herbivory is a key mechanism structuring ecosystems, and this consumer–resource interaction\u27s strength on coral reefs can indicate ecosystem health. We screened 1372, and measured features of 214, reefs throughout Australia\u27s Great Barrier Reef using high-resolution satellite imagery, combined with remote underwater videography and assays on a subset, to quantify the prevalence, size and potential causes of ‘grazing halos’. Halos are known to be seascape-scale footprints of herbivory and other ecological interactions. Here we show that these halo-like footprints are more prevalent in reserves, particularly older ones (approx. 40 years old), resulting in predictable changes to reef habitat at scales visible from space. While the direct mechanisms for this pattern are relatively clear, the indirect mechanisms remain untested. By combining remote sensing and behavioural ecology, our findings demonstrate that reserves can shape large-scale habitat structure by altering herbivores\u27 functional importance, suggesting that reserves may have greater value in restoring ecosystems than previously appreciated. Additionally, our results show that we can now detect macro-patterns in reef species interactions using freely available satellite imagery. Low-cost, ecosystem-level observation tools will be critical as reserves increase in number and scope; further investigation into whether halos may help seems warranted. Significance statement: Marine reserves are a widely used tool to mitigate fishing impacts on marine ecosystems. Predicting reserves\u27 large-scale effects on habitat structure and ecosystem functioning is a major challenge, however, because these effects unfold over longer and larger scales than most ecological studies. We use a unique approach merging remote sensing and behavioural ecology to detect ecosystem change within reserves in Australia\u27s vast Great Barrier Reef. We find evidence of changes in reefs\u27 algal habitat structure occurring over large spatial (thousands of kilometres) and temporal (40+ years) scales, demonstrating that reserves can alter herbivory and habitat structure in predictable ways. This approach demonstrates that we can now detect aspects of reefs\u27 ecological responses to protection even in remote and inaccessible reefs globally

    Functional diversity of ladder-webs : moth specialization or optimal area use?

    No full text
    Ladder-webs are built by several orb-web spider species and can be divided into two main groups based on the microhabitat in which they are built, either in open spaces (aerial) or against tree trunks (arboricolous). In Australian ladder-web spiders, Telaprocera, the elongated webs are a highly plastic behavioral response to building in space-limited conditions against tree trunks, while the aerial ladder-webs of Scoloderus are an adaptation for catching moths. However, the relative importance of moth capture in the construction of elongated webs in arboricolous spiders cannot be determined with existing data. We here present observational and experimental data concerning prey capture in the arboricolous spiders T. maudae Harmer & Framenau 2008 and T. joanae Harmer & Framenau 2008. We found that moths make up only a small fraction (<4%) of the diet of Telaprocera spiders and that the proportions of major prey orders in webs are representative of available prey. Our experiments indicate that these webs do not function well at retaining moths. However, further data are required before more definite conclusions can be drawn regarding whether these webs are more effective at retaining moths than standard orb-webs.4 page(s

    Remating inhibition in female Queensland fruit flies : effects and correlates of sperm storage

    No full text
    Reproductive success of male insects commonly hinges both on their ability to secure copulations with many mates and also on their ability to inseminate and inhibit subsequent sexual receptivity of their mates to rival males. We here present the first investigation of sperm storage in Queensland fruit flies (Tephritidae: "Bactrocera tryoni"; a.k.a. ‘Q-flies’) and address the question of whether remating inhibition in females is directly influenced by or correlated with number of sperm stored from their first mates. We used irradiation to disrupt spermatogenesis and thereby experimentally reduce the number of sperm stored by some male's mates while leaving other aspects of male sexual performance (mating probability, latency until copulating, copula duration) unaffected. Females that mated with irradiated rather than normal males were less likely to store any sperm at all (50% vs. 89%) and, if some sperm were stored, the number was greatly reduced (median 11 vs. 120). Despite the considerable differences in sperm storage, females mated by normal males and irradiated males were similarly likely to remate at the next opportunity, indicating (1) number of sperm stored does not directly drive female remating inhibition and (2) factors actually responsible for remating inhibition are similarly expressed in normal and irradiated males. While overall levels of remating were similar for mates of normal and irradiated males, factors responsible for female remating inhibition were positively associated with presence and number of sperm stored by mates of normal but not irradiated males. We suggest seminal fluids as the most likely factor responsible for remating inhibition in female Q-flies, as these are likely to be transported in proportion to number of sperm in normal males, be uninfluenced by irradiation, and be transported without systematic relation to sperm number in irradiated males.8 page(s

    Female song rate and structure predict reproductive success in a socially monogamous bird.

    Get PDF
    Bird song is commonly regarded as a male trait that has evolved through sexual selection. However, recent research has prompted a re-evaluation of this view by demonstrating that female song is an ancestral and phylogenetically widespread trait. Species with female song provide opportunities to study selective pressures and mechanisms specific to females within the wider context of social competition. We investigated the relationship between reproductive success and female song performance in the New Zealand bellbird (Anthornis melanura), a passerine resident year round in New Zealand temperate forests. We monitored breeding behavior and song over three years on Tiritiri Matangi Island. Female bellbirds contributed significantly more towards parental care than males (solely incubating young and provisioning chicks at more than twice the rate of males). Female song rate in the vicinity of the nest was higher than that of males during incubation and chick-rearing stages but similar during early-nesting and post-breeding stages. Using GLMs, we found that female song rates during both incubation and chick-rearing stages strongly predicted the number of fledged chicks. However, male song rate and male and female chick provisioning rates had no effect on fledging success. Two measures of female song complexity (number of syllable types and the number of transitions between different syllable types) were also good predictors of breeding success (GLM on PC scores). In contrast, song duration, the total number of syllables, and the number of ‘stutter’ syllables per song were not correlated with fledging success. It is unclear why male song rate was not associated with reproductive success and we speculate that extra-pair paternity might play a role. While we have previously demonstrated that female bellbird song is important in intrasexual interactions, we clearly demonstrate here that female song predicts reproductive success. These results, with others, highlight the need for a change in how we view the significance of female secondary sexual traits; traits long underestimated due to a focus on male song

    Large orb-webs adapted to maximise total biomass not rare, large prey

    No full text
    Spider orb-webs are the ultimate anti-ballistic devices, capable of dissipating the relatively massive kinetic energy of flying prey. Increased web size and prey stopping capacity have co-evolved in a number orb-web taxa, but the selective forces driving web size and performance increases are under debate. The rare, large prey hypothesis maintains that the energetic benefits of rare, very large prey are so much greater than the gains from smaller, more common prey that smaller prey are irrelevant for reproduction. Here, we integrate biophysical and ecological data and models to test a major prediction of the rare, large prey hypothesis, that selection should favour webs with increased stopping capacity and that large prey should comprise a significant proportion of prey stopped by a web. We find that larger webs indeed have a greater capacity to stop large prey. However, based on prey ecology, we also find that these large prey make up a tiny fraction of the total biomass (=energy) potentially captured. We conclude that large webs are adapted to stop more total biomass and that the capacity to stop rare, but very large, prey is an incidental consequence of the longer radial silks that scale with web size

    Optimal web investment in sub-optimal foraging conditions

    No full text
    Orb web spiders sit at the centre of their approximately circular webs when waiting for prey and so face many of the same challenges as central-place foragers. Prey value decreases with distance from the hub as a function of prey escape time. The further from the hub that prey are intercepted, the longer it takes a spider to reach them and the greater chance they have of escaping. Several species of orb web spiders build vertically elongated ladder-like orb webs against tree trunks, rather than circular orb webs in the open. As ladder web spiders invest disproportionately more web area further from the hub, it is expected they will experience reduced prey gain per unit area of web investment compared to spiders that build circular webs. We developed a model to investigate how building webs in the space-limited microhabitat on tree trunks influences the optimal size, shape and net prey gain of arboricolous ladder webs. The model suggests that as horizontal space becomes more limited, optimal web shape becomes more elongated, and optimal web area decreases. This change in web geometry results in decreased net prey gain compared to webs built without space constraints. However, when space is limited, spiders can achieve higher net prey gain compared to building typical circular webs in the same limited space. Our model shows how spiders optimise web investment in sub-optimal conditions and can be used to understand foraging investment trade-offs in other central-place foragers faced with constrained foraging arenas.6 page(s

    Large orb-webs adapted to maximise total biomass not rare, large prey

    No full text
    Spider orb-webs are the ultimate anti-ballistic devices, capable of dissipating the relatively massive kinetic energy of flying prey. Increased web size and prey stopping capacity have co-evolved in a number orb-web taxa, but the selective forces driving web size and performance increases are under debate. The rare, large prey hypothesis maintains that the energetic benefits of rare, very large prey are so much greater than the gains from smaller, more common prey that smaller prey are irrelevant for reproduction. Here, we integrate biophysical and ecological data and models to test a major prediction of the rare, large prey hypothesis, that selection should favour webs with increased stopping capacity and that large prey should comprise a significant proportion of prey stopped by a web. We find that larger webs indeed have a greater capacity to stop large prey. However, based on prey ecology, we also find that these large prey make up a tiny fraction of the total biomass (=energy) potentially captured. We conclude that large webs are adapted to stop more total biomass, and that the capacity to stop rare, but very large, prey is an incidental consequence of the longer radial silks that scale with web size

    Potential for pre-release diet supplements to increase the sexual performance and longevity of male Queensland fruit flies

    No full text
    1. Recent studies have shown that continuous access to a protein source (yeast hydrolysate) can greatly enhance the sexual performance of male Queensland fruit flies (Bactrocera tryoni; 'Q-flies'). However, in Sterile Insect Technique programmes used to eradicate or suppress wild populations, mass-reared Q-flies are typically fed only sucrose and water for up to 2 days before release. 2. We investigated whether adding a protein source to the diet of male Q-flies for a 24- or 48-h window after emergence and then removing it is sufficient to enhance mating probability, latency to mate, copula duration, probability of sperm storage, number of sperm stored, female remating tendency and longevity of male Q-flies. 3. Protein-fed males were more likely to mate than males fed only sucrose, especially when young. Protein-fed males also had shorter mating latencies and longer copulations than protein-deprived males. 4. Females mated by protein-fed males were more likely to store sperm, stored more sperm and were less likely to remate than were females mated by protein-deprived males. Females were also less likely to remate if their first mate had been large. 5. Overall, providing male Q-flies access to a protein source for a 24- or 48-h window early on in their adult life was sufficient to greatly enhance all assessed measures of performance. Although 24-h access was sufficient for a notable enhancement, further benefits were evident in males provided 48-h access. 6. The results are discussed in terms of the practical implications for Sterile Insect Technique programs used to eradicate or suppress wild Q-fly populations.8 page(s

    Sperm storage and copulation duration in a sexually cannibalistic spider

    No full text
    Female St Andrew’s Cross spiders control copulation duration by timing sexual cannibalism and may thereby control paternity if cannibalism affects sperm transfer. We have investigated the effect of copulation duration on sperm transfer and documented sperm storage patterns when we experimentally reduced the ability of females to attack and cannibalise the male. Virgin males and females were paired and randomly allocated either to a control treatment, where females were allowed to attack and cannibalise the male during copulation, or to an experimental treatment, where females were unable to cannibalise the male. The latter was achieved by placing a paintbrush against her chelicerae during copulation. Our experimental manipulation did not affect copulation duration or sperm storage. However, the number of sperm stored by the female increased with copulation duration only if the male was cannibalised, suggesting that cannibalism increases relative paternity not only through prolonged copulation duration following a fair raffle model but also through the cannibalism act itself. Future studies should explore whether cannibalised males ejaculate more sperm or whether females selectively store the sperm of cannibalised males.7 page(s
    corecore