3,815 research outputs found
Nuclear-size self-energy and vacuum-polarization corrections to the bound-electron g factor
The finite nuclear-size effect on the leading bound-electron g factor and the
one-loop QED corrections to the bound-electron g factor is investigated for the
ground state of hydrogen-like ions. The calculation is performed to all orders
in the nuclear binding strength parameter Z\alpha\ (where Z is the nuclear
charge and \alpha\ is the fine structure constant) and for the Fermi model of
the nuclear charge distribution. In the result, theoretical predictions for the
isotope shift of the 1s bound-electron g factor are obtained, which can be used
for the determination of the difference of nuclear charge radii from
experimental values of the bound-electron g factors for different isotopes
QED calculation of the nuclear magnetic shielding for hydrogen-like ions
We report an ab initio calculation of the shielding of the nuclear magnetic
moment by the bound electron in hydrogen-like ions. This investigation takes
into account several effects that have not been calculated before (electron
self-energy, vacuum polarization, nuclear magnetization distribution), thus
bringing the theory to the point where further progress is impeded by the
uncertainty due to nuclear-structure effects. The QED corrections are
calculated to all orders in the nuclear binding strength parameter and,
independently, to the leading order in the expansion in this parameter. The
results obtained lay the ground for the high-precision determination of nuclear
magnetic dipole moments from measurements of the g-factor of hydrogen-like
ions
QED theory of the nuclear magnetic shielding in hydrogen-like ions
The shielding of the nuclear magnetic moment by the bound electron in
hydrogen-like ions is calculated ab initio with inclusion of relativistic,
nuclear, and quantum electrodynamics (QED) effects. The QED correction is
evaluated to all orders in the nuclear binding strength parameter and,
independently, to the first order in the expansion in this parameter. The
results obtained lay the basis for the high-precision determination of nuclear
magnetic dipole moments from measurements of the g-factor of hydrogen-like
ions.Comment: 4 pages, 2 tables, 2 figure
Electron-correlation effects in the -factor of light Li-like ions
We investigate electron-correlation effects in the -factor of the ground
state of Li-like ions. Our calculations are performed within the
nonrelativistic quantum electrodynamics (NRQED) expansion up to two leading
orders in the fine-structure constant , and . The
dependence of the NRQED results on the nuclear charge number is studied and
the individual -expansion contributions are identified. Combining the
obtained data with the results of the all-order (in ) calculations
performed within the expansion, we derive the unified theoretical
predictions for the -factor of light Li-like ions.Comment: 9 pages, 4 table
Phase reconstruction of strong-field excited systems by transient-absorption spectroscopy
We study the evolution of a V-type three-level system, whose two resonances
are coherently excited and coupled by two ultrashort laser pump and probe
pulses, separated by a varying time delay. We relate the quantum dynamics of
the excited multi-level system to the absorption spectrum of the transmitted
probe pulse. In particular, by analyzing the quantum evolution of the system,
we interpret how atomic phases are differently encoded in the
time-delay-dependent spectral absorption profiles when the pump pulse either
precedes or follows the probe pulse. We experimentally apply this scheme to
atomic Rb, whose fine-structure-split 5s\,^2S_{1/2}\rightarrow 5p\,^2P_{1/2}
and 5s\,^2S_{1/2}\rightarrow 5p\,^2P_{3/2} transitions are driven by the
combined action of a pump pulse of variable intensity and a delayed probe
pulse. The provided understanding of the relationship between quantum phases
and absorption spectra represents an important step towards full time-dependent
phase reconstruction (quantum holography) of bound-state wave-packets in
strong-field light-matter interactions with atoms, molecules and solids.Comment: 5 pages, 4 figure
Thermoelectric three-terminal hopping transport through one-dimensional nanosystems
A two-site nanostructure (e.g, a "molecule") bridging two conducting leads
and connected to a phonon bath is considered. The two relevant levels closest
to the Fermi energy are connected each to its lead. The leads have slightly
different temperatures and chemical potentials and the nanos- tructure is also
coupled to a thermal (third) phonon bath. The 3 x 3 linear transport
("Onsager") matrix is evaluated, along with the ensuing new figure of merit,
and found to be very favorable for thermoelectric energy conversion.Comment: Accepted by Phys. Rev.
Access to improve the muon mass and magnetic moment anomaly via the bound-muon factor
A theoretical description of the factor of a muon bound in a nuclear
potential is presented. One-loop self-energy and multi-loop vacuum polarization
corrections are calculated, taking into account the interaction with the
binding potential exactly. Nuclear effects on the bound-muon factor are
also evaluated. We put forward the measurement of the bound-muon factor via
the continuous Stern-Gerlach effect as an independent means to determine the
free muons magnetic moment anomaly and mass. The scheme presented enables to
increase the accuracy of the mass by more than an order of magnitude
Extraction of the electron mass from factor measurements on light hydrogenlike ions
The determination of the electron mass from Penning-trap measurements with
C ions and from theoretical results for the bound-electron
factor is described in detail. Some recently calculated contributions slightly
shift the extracted mass value. Prospects of a further improvement of the
electron mass are discussed both from the experimental and from the theoretical
point of view. Measurements with He ions will enable a consistency
check of the electron mass value, and in future an improvement of the He
nuclear mass and a determination of the fine-structure constant
- …