4,816 research outputs found
Room temperature spin relaxation in GaAs/AlGaAs multiple quantum wells
We have explored the dependence of electron spin relaxation in undoped GaAs/AlGaAs quantum wells on well width (confinement energy) at 300 K. For wide wells, the relaxation rate tends to the intrinsic bulk value due to the D'yakonov-Perel (DP) mechanism with momentum scattering by phonons. In narrower wells, there is a strong dependence of relaxation rate on well width, as expected for the DP mechanism, but also considerable variation between samples from different sources, which we attribute to differences in sample interface morphology. (C) 1998 American Institute of Physics. [S0003-6951(98)02541-8].</p
Cobalt deficiency of stock in the Busselton-Augusta region.
During the past decade evidence has accumulated which indicates that large areas of country south of Busselton are deficient in cobalt. This information has been spread verbally by officers of the Department of Agriculture through personal contacts and at field days, but so far no information has been published concerning the extent and degree of the deficiency. The purpose of this article is to place on record the clinical and chemical investigations carried out since 1944
Modeling the Concentrations of Gas-Phase Toxic Organic Air Pollutants: Direct Emissions and Atmospheric Formation
An Eulerian photochemical air quality model is described
for the prediction of the atmospheric transport and
chemical reactions of gas-phase toxic organic air pollutants. Model performance was examined in the Los Angeles, CA, area over the period August 27-28, 1987. The organic compounds were drawn from a list of 189 species selected for control as hazardous air pollutants in the Clean Air Act amendments of 1990. The species considered include benzene, various alkylbenzenes, phenol, cresols, 1,3- butadiene, acrolein, formaldehyde, acetaldehyde, and
perchloroethylene among others. It is found that photochemical generation contributes significantly to form-aldehyde, acetaldehyde, acetone, and acrolein concentrations for the 2-day period studied. Phenol concentrations are dominated by direct emissions, despite the existence of a pathway for atmospheric formation from benzene oxidation. The finding that photochemical production
can be a major contributor to the total concentrations of
some toxic organic species implies that control programs
for those species must consider more than just direct
emissions
Association between psychotropic drug prescription and suicide rates in Scotland:Population study
Aims and method:
Rates of prescriptions of antidepressants and suicide are inversely correlated at an epidemiological level. Less attention has been paid to relationships between other drugs used in mental health and suicide rates. Here we tested relationships between prescriptions of anxiolytics and antipsychotics and suicide rates in Scotland.
Results:
Suicide rates were inversely correlated with prescriptions of antidepressants and antipsychotics over 14 years (2004–2018), and positively with prescriptions of anxiolytics.
Clinical implications:
This illustrates the role of medications used in mental health in suicide prevention, and highlights the importance of identifying causal mechanisms that link anxiolytics with suicide
TDP-43 and FUS mislocalization in VCP mutant motor neurons is reversed by pharmacological inhibition of the VCP D2 ATPase domain
RNA binding proteins have been shown to play a key role in the pathogenesis of amyotrophic lateral sclerosis (ALS). Mutations in valosin-containing protein (VCP/p97) cause ALS and exhibit the hallmark nuclear-to-cytoplasmic mislocalization of RNA binding proteins (RBPs). However, the mechanism by which mutations in VCP lead to this mislocalization of RBPs remains incompletely resolved. To address this, we used human-induced pluripotent stem cell-derived motor neurons carrying VCP mutations. We first demonstrate reduced nuclear-to-cytoplasmic ratios of transactive response DNA-binding protein 43 (TDP-43), fused in sarcoma/translocated in liposarcoma (FUS) and splicing factor proline and glutamine rich (SFPQ) in VCP mutant motor neurons. Upon closer analysis, we also find these RBPs are mislocalized to motor neuron neurites themselves. To address the hypothesis that altered function of the D2 ATPase domain of VCP causes RBP mislocalization, we used pharmacological inhibition of this domain in control motor neurons and found this does not recapitulate RBP mislocalization phenotypes. However, D2 domain inhibition in VCP mutant motor neurons was able to robustly reverse mislocalization of both TDP-43 and FUS, in addition to partially relocalizing SFPQ from the neurites. Together these results argue for a gain-of-function of D2 ATPase in VCP mutant human motor neurons driving the mislocalization of TDP-43 and FUS. Our data raise the intriguing possibility of harnessing VCP D2 ATPase inhibitors in the treatment of VCP-related ALS
Bipolar Disorder and the TCI: Higher Self-Transcendence in Bipolar Disorder Compared to Major Depression
Personality traits are potential endophenotypes for genetic studies of psychiatric disorders. One personality theory which demonstrates strong heritability is Cloninger's psychobiological model measured using the temperament and character inventory (TCI).
277 individuals who completed the TCI questionnaire as part of the South Island Bipolar Study were also interviewed to assess for lifetime psychiatric diagnoses. Four groups were compared, bipolar disorder (BP), type 1 and 2, MDD (major depressive disorder), and nonaffected relatives of a proband with BP.
With correction for mood state, total harm avoidance (HA) was higher than unaffected in both MDD and BP groups, but the mood disorder groups did not differ from each other. However, BP1 individuals had higher self-transcendence (ST) than those with MDD and unaffected relatives. HA may reflect a trait marker of mood disorders whereas high ST may be specific to BP. As ST is heritable, genes that affect ST may be of relevance for vulnerability to BP
Bionomic response of Aedes aegypti to two future climate change scenarios in far north Queensland, Australia: implications for dengue outbreaks
BACKGROUND: Dengue viruses are transmitted by anthropophilic mosquitoes and infect approximately 50 million humans annually. To investigate impacts of future climate change on dengue virus transmission, we investigated bionomics of the mosquito vector, Aedes aegypti. METHODS: Using a dynamic life table simulation model (the Container inhabiting mosquito simulation CIMSiM) and statistically downscaled daily values for future climate, we assessed climate change induced changes to mosquito bionomics. Simulations of Ae. aegypti populations for current (1991-2011) and future climate (2046-2065) were conducted for the city of Cairns, Queensland, the population centre with most dengue virus transmission in Australia. Female mosquito abundance, wet weight, and the extrinsic incubation period for dengue virus in these mosquitoes were estimated for current and future climate (MPI ECHAM 5 model, B1 and A2 emission scenarios). RESULTS: Overall mosquito abundance is predicted to change, but results were equivocal for different climate change scenarios. Aedes aegypti abundance is predicted to increase under the B1, but decrease under the A2 scenario. Mosquitoes are predicted to have a smaller body mass in a future climate. Shorter extrinsic incubation periods are projected. CONCLUSIONS: It is therefore unclear whether dengue risk would increase or decrease in tropical Australia with climate change. Our findings challenge the prevailing view that a future, warmer climate will lead to larger mosquito populations and a definite increase in dengue transmission. Whilst general predictions can be made about future mosquito borne disease incidence, cautious interpretation is necessary due to interaction between local environment, human behaviour and built environment, dengue virus, and vectors.This project was funded by the Commonwealth Department for Climate Change, via the NH&MRC (project 1003371)
Approximate Flavor Symmetries in the Lepton Sector
Approximate flavor symmetries in the quark sector have been used as a handle
on physics beyond the Standard Model. Due to the great interest in neutrino
masses and mixings and the wealth of existing and proposed neutrino experiments
it is important to extend this analysis to the leptonic sector. We show that in
the see-saw mechanism, the neutrino masses and mixing angles do not depend on
the details of the right-handed neutrino flavor symmetry breaking, and are
related by a simple formula. We propose several ans\"{a}tze which relate
different flavor symmetry breaking parameters and find that the MSW solution to
the solar neutrino problem is always easily fit. Further, the oscillation is unlikely to solve the atmospheric neutrino problem
and, if we fix the neutrino mass scale by the MSW solution, the neutrino masses
are found to be too small to close the Universe.Comment: 12 pages (no figures), LBL-3459
Bionomic response of Aedes aegypti to two future climate change scenarios in far north Queensland, Australia: implications for dengue outbreaks
Background: Dengue viruses are transmitted by anthropophilic mosquitoes and infect approximately 50 million humans annually. To investigate impacts of future climate change on dengue virus transmission, we investigated bionomics of the mosquito vector, Aedes aegypti.
Methods: Using a dynamic life table simulation model (the Container inhabiting mosquito simulation CIMSiM) and statistically downscaled daily values for future climate, we assessed climate change induced changes to mosquito bionomics. Simulations of Ae. aegypti populations for current (1991-2011) and future climate (2046-2065) were conducted for the city of Cairns, Queensland, the population centre with most dengue virus transmission in Australia. Female mosquito abundance, wet weight, and the extrinsic incubation period for dengue virus in these mosquitoes were estimated for current and future climate (MPI ECHAM 5 model, B1 and A2 emission scenarios).
Results: Overall mosquito abundance is predicted to change, but results were equivocal for different climate change scenarios. Aedes aegypti abundance is predicted to increase under the B1, but decrease under the A2 scenario. Mosquitoes are predicted to have a smaller body mass in a future climate. Shorter extrinsic incubation periods are projected.
Conclusions: It is therefore unclear whether dengue risk would increase or decrease in tropical Australia with climate change. Our findings challenge the prevailing view that a future, warmer climate will lead to larger mosquito populations and a definite increase in dengue transmission. Whilst general predictions can be made about future mosquito borne disease incidence, cautious interpretation is necessary due to interaction between local environment, human behaviour and built environment, dengue virus, and vectors
- …