12 research outputs found

    A New Solution for the Dispersive Element in Astronomical Spectrographs

    Get PDF
    We present a new solution for the dispersive element in astronomical spectrographs that, in many cases, can provide an upgrade path to enhance the spectral resolution of existing moderate-resolution reflection-grating spectrographs. We demonstrate that in the case of LRIS-R at the Keck 1 Telescope, a spectral resolution of 18,000 can be achieved with reasonable throughput under good seeing conditions

    The Cryogenic Refractive Indices of S-FTM16, a Unique Optical Glass for Near-Infrared Instruments

    Full text link
    The Ohara glass S-FTM16 is of considerable interest for near-infrared optical designs because it transmits well through the K band and because negative S-FTM16 elements can be used to accurately achromatize positive calcium fluoride elements in refractive collimators and cameras. Glass manufacturers have sophisticated equipment to measure the refractive index at room temperature, but cannot typically measure the refractive index at cryogenic temperatures. Near-infrared optics, however, are operated at cryogenic temperatures to reduce thermal background. Thus we need to know the temperature dependence of S-FTM16's refractive index. We report here our measurements of the thermal dependence of S-FTM16's refractive index between room temperature and ~77 K. Within our measurement errors we find no evidence for a wavelength dependence or a nonlinear temperature term so our series of measurements can be reduced to a single number. We find that Delta n_{abs} / Delta T = -2.4x10^{-6} K^{-1} between 298 K and ~77 K and in the wavelength range 0.6 micron to 2.6 micron. We estimate that the systematic error (which dominates the measurement error) in our measurement is 10%, sufficiently low for most purposes. We also find the integrated linear thermal expansion of S-FTM16 between 298 K and 77 K is -0.00167 m m^{-1}.Comment: 8 pages, including 9 figures. Uses emulateapj.cls. Accepted for publication in PAS

    A New Observational Upper Limit to the Low Redshift Ionizing Background Radiation

    Get PDF
    We report a new Fabry-Perot search for Halpha emission from the intergalactic cloud HI 1225+01 in an attempt to measure the low redshift ionizing background radiation. We set a new 2 sigma upper limit on Halpha emission of 8 mR (5 x 10^{-20} ergs cm^{-2} s^{-1} arcsec^{-2}). Conversion of this limit to limits on the strength of the ionizing background requires knowledge of the ratio of the projected to total surface area of this cloud, which is uncertain. We discuss the plausible range of this ratio, and within this range find that the strength of the ionizing backround is in the lower range of, but consistent with, previous observational and theoretical estimates.Comment: 46 pages including 9 figures (7 ps, 2 gif

    MOSFIRE, the multi-object spectrometer for infra-red exploration at the Keck Observatory

    Get PDF
    This paper describes the as-built performance of MOSFIRE, the multi-object spectrometer and imager for the Cassegrain focus of the 10-m Keck 1 telescope. MOSFIRE provides near-infrared (0.97 to 2.41 ÎĽm) multi-object spectroscopy over a 6.1' x 6.1' field of view with a resolving power of R~3,500 for a 0.7" (0.508 mm) slit (2.9 pixels in the dispersion direction), or imaging over a field of view of ~6.9' diameter with ~0.18" per pixel sampling. A single diffraction grating can be set at two fixed angles, and order-sorting filters provide spectra that cover the K, H, J or Y bands by selecting 3rd, 4th, 5th or 6th order respectively. A folding flat following the field lens is equipped with piezo transducers to provide tip/tilt control for flexure compensation at the <0.1 pixel level. Instead of fabricated focal plane masks requiring frequent cryo-cycling of the instrument, MOSFIRE is equipped with a cryogenic Configurable Slit Unit (CSU) developed in collaboration with the Swiss Center for Electronics and Microtechnology (CSEM). Under remote control the CSU can form masks containing up to 46 slits with ~0.007-0.014" precision. Reconfiguration time is < 6 minutes. Slits are formed by moving opposable bars from both sides of the focal plane. An individual slit has a length of 7.0" but bar positions can be aligned to make longer slits in increments of 7.5". When masking bars are retracted from the field of view and the grating is changed to a mirror, MOSFIRE becomes a wide-field imager. The detector is a 2K x 2K H2-RG HgCdTe array from Teledyne Imaging Sensors with low dark current and low noise. Results from integration and commissioning are presented

    MOSFIRE, the multi-object spectrometer for infra-red exploration at the Keck Observatory

    Get PDF
    This paper describes the as-built performance of MOSFIRE, the multi-object spectrometer and imager for the Cassegrain focus of the 10-m Keck 1 telescope. MOSFIRE provides near-infrared (0.97 to 2.41 ÎĽm) multi-object spectroscopy over a 6.1' x 6.1' field of view with a resolving power of R~3,500 for a 0.7" (0.508 mm) slit (2.9 pixels in the dispersion direction), or imaging over a field of view of ~6.9' diameter with ~0.18" per pixel sampling. A single diffraction grating can be set at two fixed angles, and order-sorting filters provide spectra that cover the K, H, J or Y bands by selecting 3rd, 4th, 5th or 6th order respectively. A folding flat following the field lens is equipped with piezo transducers to provide tip/tilt control for flexure compensation at the <0.1 pixel level. Instead of fabricated focal plane masks requiring frequent cryo-cycling of the instrument, MOSFIRE is equipped with a cryogenic Configurable Slit Unit (CSU) developed in collaboration with the Swiss Center for Electronics and Microtechnology (CSEM). Under remote control the CSU can form masks containing up to 46 slits with ~0.007-0.014" precision. Reconfiguration time is < 6 minutes. Slits are formed by moving opposable bars from both sides of the focal plane. An individual slit has a length of 7.0" but bar positions can be aligned to make longer slits in increments of 7.5". When masking bars are retracted from the field of view and the grating is changed to a mirror, MOSFIRE becomes a wide-field imager. The detector is a 2K x 2K H2-RG HgCdTe array from Teledyne Imaging Sensors with low dark current and low noise. Results from integration and commissioning are presented

    The Multi-Object, Fiber-Fed Spectrographs for SDSS and the Baryon Oscillation Spectroscopic Survey

    Full text link
    We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measure redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-alpha absorption of 160,000 high redshift quasars over 10,000 square degrees of sky, making percent level measurements of the absolute cosmic distance scale of the Universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near ultraviolet to the near infrared, with a resolving power R = \lambda/FWHM ~ 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 < \lambda < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances.Comment: 43 pages, 42 figures, revised according to referee report and accepted by AJ. Provides background for the instrument responsible for SDSS and BOSS spectra. 4th in a series of survey technical papers released in Summer 2012, including arXiv:1207.7137 (DR9), arXiv:1207.7326 (Spectral Classification), and arXiv:1208.0022 (BOSS Overview

    Disease resistance in the vegetable crops. II

    No full text
    corecore