51 research outputs found

    Solution-phase synthesis of pyrrole-imidazole polyamides

    Get PDF
    Pyrrole−imidazole polyamides are DNA-binding molecules that are programmable for a large repertoire of DNA sequences. Typical syntheses of this class of heterocyclic oligomers rely on solid-phase methods. Solid-phase methodologies offer rapid assembly on a micromole scale sufficient for biophysical characterizations and cell culture studies. In order to produce gram-scale quantities necessary for efficacy studies in animals, polyamides must be readily synthesized in solution. An 8-ring hairpin polyamide 1, which targets the DNA sequence 5′-WGWWCW-3′, was chosen for our synthesis studies as this oligomer exhibits androgen receptor antagonism in cell culture models of prostate cancer. A convergent solution-phase synthesis of 1 from a small set of commercially available building blocks is presented which highlights principles for preparing gram quantities of pyrrole−imidazole oligomers with minimal chromatography

    Oligomerization Route to Py-Im Polyamide Macrocycles

    Get PDF
    Cyclic eight-ring pyrrole−imidazole polyamides are sequence-specific DNA-binding small molecules that are cell permeable and can regulate endogenous gene expression. Syntheses of cyclic polyamides have been achieved by solid-phase and solution-phase methods. A rapid solution-phase oligomerization approach to eight-ring symmetrical cyclic polyamides yields 12- and 16-membered macrocycles as well. A preference for DNA binding by the 8- and 16-membered oligomers was observed over the 12-ring macrocycle, which we attributed to a conformational constraint not present in the smaller and larger systems

    Cyclic pyrrole-imidazole polyamides targeted to the androgen response element

    Get PDF
    Hairpin pyrrole−imidazole (Py-Im) polyamides are a class of cell-permeable DNA-binding small molecules that can disrupt transcription factor−DNA binding and regulate endogenous gene expression. The covalent linkage of antiparallel Py-Im ring pairs with an γ-amino acid turn unit affords the classical hairpin Py-Im polyamide structure. Closing the hairpin with a second turn unit yields a cyclic polyamide, a lesser-studied architecture mainly attributable to synthetic inaccessibility. We have applied our methodology for solution-phase polyamide synthesis to cyclic polyamides with an improved high-yield cyclization step. Cyclic 8-ring Py-Im polyamides 1−3 target the DNA sequence 5′-WGWWCW-3′, which corresponds to the androgen response element (ARE) bound by the androgen receptor transcription factor to modulate gene expression. We find that cyclic Py-Im polyamides 1−3 bind DNA with exceptionally high affinities and regulate the expression of AR target genes in cell culture studies, from which we infer that the cycle is cell permeable

    Development of a novel polyamide-based agent to inhibit EVI1 function

    Get PDF
    The EVI1 gene at chromosome 3q26 is associated with acute myeloid leukemogenesis, due to both chromosomal rearrangement and to overexpression in the absence of rearrangement. Some rearrangements such as t(3;3) and inv(3) result in overexpression of EVI1 protein, while translocation t(3;21) yields an AML1-MDS1-EVI1 (AME) fusion protein. EVI1 possesses two zinc finger domains, an N-terminal domain with fingers 1–7, which binds to GACAAGATA, and a C-terminal domain (fingers 8–10) which binds GAAGATGAG. Inhibition of EVI1 function with a small molecule compound may provide a targeted therapy for EVI1-expressing leukemias. As a first step towards inhibiting the leukemogenic function of EVI1, we performed structure-function studies on both EVI1 and AME protein to determine what domains are critical for malignant transformation activity. Assays were Rat1 fibroblasts in a soft agar colony forming assay for EVI1; primary bone marrow cells in a serial replating assay for AME. Both assays revealed that mutation of arginine 205 in zinc finger 6 of EVI1, which completely abrogates sequencespecific DNA binding via the N-terminal zinc finger domain, resulted in complete loss of transforming activity; mutations in other domains, such as the C-terminal zinc finger domain, CtBP binding domain, and the domains of AML1 had less of an effect or no effect on transforming activity. In an effort to inhibit EVI1 leukemogenic function, we developed a polyamide, DH-IV-298, designed to block zinc fingers 1–7 binding to the GACAAGATA motif. DNAseI footprinting revealed a specific interaction between DH-IV-298 and the GACAAGATA motif; no significant interaction was observed elsewhere; a mismatch polyamide failed to footprint at equivalent concentrations; and DH-IV-298 failed to bind to a control DNA lacking the GACAAGATA motif. Electromobility shift assay showed that, at a 1:1 polyamide:DNA ratio, DH-IV-298 lowered EVI1:DNA affinity by over 98%, while mismatch was significantly less effective (74% reduction). To assess the effect of DH-IV-298 on EVI1 binding to DNA in vivo, we performed CAT reporter assays in a NIH-3T3-derived cell line with a chromosome-embedded tet-inducible EVI1-VP16 as well as a EVI1-responsive CAT reporter. Removal of tetracycline resulted in a four-fold increase in CAT activity that was completely blocked by DH-IV-298. The mismatch polyamide was significantly less effective than DH-IV-298. Further studies are being performed to assess the effect on endogenous gene expression, and on growth of leukemic cells that express EVI1. These studies provide evidence that a cell permeable small molecule compound may effectively block the activity of a leukemogenic transcription factor

    Lethal Mutagenesis of Poliovirus Mediated by a Mutagenic Pyrimidine Analogue

    Get PDF
    Lethal mutagenesis is the mechanism of action of ribavirin against poliovirus (PV) and numerous other RNA viruses. However, there is still considerable debate regarding the mechanism of action of ribavirin against a variety of RNA viruses. Here we show by using T7 RNA polymerase mediated production of PV genomic RNA, PV polymerase-catalyzed primer extension and cell-free PV synthesis that a pyrimidine ribonucleoside triphosphate analogue (rPTP) with ambiguous basepairing capacity is an efficient mutagen of the PV genome. The in vitro incorporation properties of rPTP are superior to ribavirin triphosphate. We observed a log-linear relationship between virus titer reduction and the number of rPMP molecules incorporated. A PV genome encoding a high-fidelity polymerase was more sensitive to rPMP incorporation, consistent with diminished mutational robustness of high-fidelity PV. The nucleoside (rP) did not exhibit antiviral activity in cell culture owing to the inability of rP to be converted to rPMP by cellular nucleotide kinases. rP was also a poor substrate for herpes simplex virus thymidine kinase. The block to nucleoside phosphorylation could be bypassed by treatment with the P nucleobase, which exhibited both antiviral activity and mutagenesis, presumably a reflection of rP nucleotide formation by a nucleotide salvage pathway. These studies provide additional support for lethal mutagenesis as an antiviral strategy, suggest that rPMP prodrugs may be highly efficacious antiviral agents, and provide a new tool to determine the sensitivity of RNA virus genomes to mutagenesis as well as interrogation of the impact of mutational load on the population dynamics of these viruses

    Lethal Mutagenesis of Picornaviruses with N-6-Modified Purine Nucleoside Analogues

    Get PDF
    RNA viruses exhibit extraordinarily high mutation rates during genome replication. Nonnatural ribonucleosides that can increase the mutation rate of RNA viruses by acting as ambiguous substrates during replication have been explored as antiviral agents acting through lethal mutagenesis. We have synthesized novel N-6-substituted purine analogues with ambiguous incorporation characteristics due to tautomerization of the nucleobase. The most potent of these analogues reduced the titer of poliovirus (PV) and coxsackievirus (CVB3) over 1,000-fold during a single passage in HeLa cell culture, with an increase in transition mutation frequency up to 65-fold. Kinetic analysis of incorporation by the PV polymerase indicated that these analogues were templated ambiguously with increased efficiency compared to the known mutagenic nucleoside ribavirin. Notably, these nucleosides were not efficient substrates for cellular ribonucleotide reductase in vitro, suggesting that conversion to the deoxyriboucleoside may be hindered, potentially limiting genetic damage to the host cell. Furthermore, a high-fidelity PV variant (G64S) displayed resistance to the antiviral effect and mutagenic potential of these analogues. These purine nucleoside analogues represent promising lead compounds in the development of clinically useful antiviral therapies based on the strategy of lethal mutagenesis

    A Chemical Strategy for Intracellular Arming of an Endogenous Broad-Spectrum Antiviral Nucleotide

    Get PDF
    The naturally occurring nucleotide 3′-deoxy-3′,4′-didehydro-cytidine-5′-triphosphate (ddhCTP) was recently found to exert potent and broad-spectrum antiviral activity. However, nucleoside 5′-triphosphates in general are not cell-permeable, which precludes the direct use of ddhCTP as a therapeutic. To harness the therapeutic potential of this endogenous antiviral nucleotide, we synthesized phosphoramidate prodrug HLB-0532247 (1) and found it to result in dramatically elevated levels of ddhCTP in cells. We compared 1 and 3′-deoxy-3′,4′-didehydro-cytidine (ddhC) and found that 1 more effectively reduces titers of Zika and West Nile viruses in cell culture with minimal nonspecific toxicity to host cells. We conclude that 1 is a promising antiviral agent based on a novel strategy of facilitating elevated levels of the endogenous ddhCTP antiviral nucleotide

    Interfering with nucleotide excision by the coronavirus 3′-to-5′ exoribonuclease

    Get PDF
    Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3′-to-5′ proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for control of SARS-CoV-2 infection. ExoN is formed by a 1:1 complex of nsp14 and nsp10 proteins. We have purified and characterized ExoN using a robust, quantitative system that reveals determinants of specificity and efficiency of hydrolysis. Double-stranded RNA is preferred over single-stranded RNA. Nucleotide excision is distributive, with only one or two nucleotides hydrolyzed in a single binding event. The composition of the terminal basepair modulates excision. A stalled SARS-CoV-2 replicase in complex with either correctly or incorrectly terminated products prevents excision, suggesting that a mispaired end is insufficient to displace the replicase. Finally, we have discovered several modifications to the 3′-RNA terminus that interfere with or block ExoN-catalyzed excision. While a 3′-OH facilitates hydrolysis of a nucleotide with a normal ribose configuration, this substituent is not required for a nucleotide with a planar ribose configuration such as that present in the antiviral nucleotide produced by viperin. Design of ExoN-resistant, antiviral ribonucleotides should be feasible

    Induced intra- and intermolecular template switching as a therapeutic mechanism against RNA viruses

    Get PDF
    Viral RNA-dependent RNA polymerases (RdRps) are a target for broad-spectrum antiviral therapeutic agents. Recently, we demonstrated that incorporation of the T-1106 triphosphate, a pyrazine-carboxamide ribonucleotide, into nascent RNA increases pausing and backtracking by the poliovirus RdRp. Here, by monitoring enterovirus A-71 RdRp dynamics during RNA synthesis using magnetic tweezers, we identify the ‘‘backtracked’’ state as an intermediate used by the RdRp for copy-back RNA synthesis and homologous recombination. Cell-based assays and RNA sequencing (RNA-seq) experiments further demonstrate that the pyrazine-carboxamide ribonucleotide stimulates these processes during infection. These results suggest that pyrazine-carboxamide ribonucleotides do not induce lethal mutagenesis or chain termination but function by promoting template switching and formation of defective viral genomes. We conclude that RdRp-catalyzed intra- and intermolecular template switching can be induced by pyrazine-carboxamide ribonucleotides, defining an additional mechanistic class of antiviral ribonucleotides with potential for broad-spectrum activity
    corecore