14 research outputs found

    FKBP8 (FK506 binding protein 8, 38kDa)

    Get PDF
    Review on FKBP8 (FK506 binding protein 8, 38kDa), with data on DNA, on the protein encoded, and where the gene is implicated

    Luteolin Suppresses Cancer Cell Proliferation by Targeting Vaccinia-Related Kinase 1

    No full text
    Uncontrolled proliferation, a major feature of cancer cells, is often triggered by the malfunction of cell cycle regulators such as protein kinases. Recently, cell cycle-related protein kinases have become attractive targets for anti-cancer therapy, because they play fundamental roles in cellular proliferation. However, the protein kinase-targeted drugs that have been developed so far do not show impressive clinical results and also display severe side effects; therefore, there is undoubtedly a need to investigate new drugs targeting other protein kinases that are critical in cell cycle progression. Vaccinia-related kinase 1 (VRK1) is a mitotic kinase that functions in cell cycle regulation by phosphorylating cell cycle-related substrates such as barrier-to-autointegration factor (BAF), histone H3, and the cAMP response element (CRE)-binding protein (CREB). In our study, we identified luteolin as the inhibitor of VRK1 by screening a small-molecule natural compound library. Here, we evaluated the efficacy of luteolin as a VRK1-targeted inhibitor for developing an effective anti-cancer strategy. We confirmed that luteolin significantly reduces VRK1-mediated phosphorylation of the cell cycle-related substrates BAF and histone H3, and directly interacts with the catalytic domain of VRK1. In addition, luteolin regulates cell cycle progression by modulating VRK1 activity, leading to the suppression of cancer cell proliferation and the induction of apoptosis. Therefore, our study suggests that luteolin-induced VRK1 inhibition may contribute to establish a novel cell cycle-targeted strategy for anticancer therapy.X111213sciescopu

    Synthesis and biological screening of new Lawson derivatives as selective substrate‐based inhibitors of cytochrome bo3 ubiquinol oxidase from escherichia coli

    No full text
    The respiratory chain of Escherichia coli contains two different types of terminal oxidase that are differentially regulated as a response to changing environmental conditions. These oxidoreductases catalyze the reduction of molecular oxygen to water and contribute to the proton motive force. The cytochrome bo3 oxidase (cyt bo3) acts as the primary terminal oxidase under atmospheric oxygen levels, whereas the bd‐type oxidase is most abundant under microaerobic conditions. In E. coli, both types of respiratory terminal oxidase (HCO and bd‐type) use ubiquinol‐8 as electron donor. Here, we assess the inhibitory potential of newly designed and synthesized 3‐alkylated Lawson derivatives through L‐proline‐catalyzed three‐component reductive alkylation (TCRA). The inhibitory effects of these Lawson derivatives on the terminal oxidases of E. coli (cyt bo3 and cyt bd‐I) were tested potentiometrically. Four compounds were able to reduce the oxidoreductase activity of cyt bo3 by more than 50 % without affecting the cyt bd‐I activity. Moreover, two inhibitors for both cyt bo3 and cyt bd‐I oxidase could be identified. Based on molecular‐docking simulations, we propose binding modes of the new Lawson inhibitors. The molecular fragment benzyl enhances the inhibitory potential and selectivity for cyt bo3, whereas heterocycles reduce this effect. This work extends the library of 3‐alkylated Lawson derivatives as selective inhibitors for respiratory oxidases and provides molecular probes for detailed investigations of the mechanisms of respiratory‐chain enzymes of E. coli
    corecore