40 research outputs found

    Nomen est Omen: do antidepressants increase p11 or S100A10?

    Get PDF
    Occasionally, multiple names are given to the same gene/protein. When this happens, different names can be used in subsequent publications, for example in different research areas, sometimes with little or no awareness that the same entity known under a different name may have a major role in another field of science. Recent reports about the protein p11 presented findings that this protein, commonly known as S100A10, may play a crucial role in depression and antidepressant treatment mechanisms. One set of data showed an increased expression of this protein in the brain of mice treated with antidepressants. P11/S100A10 is only one of several S100 proteins expressed in the brain. Interestingly, it has been previously noted that antidepressant treatment increases the brain content of another S100 protein, S100B. It appears that up-regulating the brain content of various S100 proteins might be a common feature of antidepressants. In cells coexpressing S100A10 and S100B, these proteins may interact and exert opposite regulatory roles. Nevertheless, S100A10 is predominantly expressed in certain types of neurons whereas S100B is more abundant in glia. Thus, an interplay among multiple members of the S100 proteins might be important in determining the region and cell specificity of antidepressant mechanisms. Calling the p11 protein by its other name, S100A10, may prompt more investigators from different fields to participate in this new direction of neurobiological research

    Benefits of Neuropsychiatric Phenomics: Example of the 5-Lipoxygenase-Leptin-Alzheimer Connection

    Get PDF
    Phenomics is a systematic study of phenotypes on a genomewide scale that is expected to unravel, as of yet, unsuspected functional roles of the genome. It remains to be determined how to optimally approach and analyze the available phenomics databases to spearhead innovation in neuropsychiatry. By serendipitously connecting two unrelated phenotypes of increased blood levels of the adipokine leptin, a molecule that regulates appetite, in 5-lipoxygenase- (5-LOX) deficient mice and patients with a lower risk for Alzheimer's disease (AD), we postulated a leptin-mediated basis for beneficial effects of ALOX5 (a gene encoding 5-LOX) gene-deficiency in AD. We suggest that it might be possible to avoid relying on serendipity and develop data-mining tools capable of extracting from phenomics databases indications for such novel hypotheses. Hence, we provide an example of using a free-access Arrowsmith two-node search interface to identify ALOX5 as unsuspected putative mechanisms for the previously described clinical association between increased plasma levels of leptin and a lower risk of incident dementia and AD

    The Heart-Brain Connection Begets Cardiovascular Psychiatry and Neurology

    Get PDF

    5-Lipoxygenase-Activating Protein as a Modulator of Olanzapine-Induced Lipid Accumulation in Adipocyte

    Get PDF
    Experiments were performed in 3T3-L1 preadipocytes differentiated in vitro into adipocytes. Cells were treated with olanzapine and a 5-lipoxygenase (5-LOX) activating protein (FLAP) inhibitor MK-886. Lipid content was measured using an Oil Red O assay; 5-LOX and FLAP mRNA content was measured using quantitative real-time PCR; the corresponding protein contents were measured using quantitative Western blot assay. Olanzapine did not affect the cell content of 5-LOX mRNA and protein; it decreased FLAP mRNA and protein content at day five but not 24 hours after olanzapine addition. In the absence of MK-886, low concentrations of olanzapine increased lipid content only slightly, whereas a 56% increase was induced by 50 M olanzapine. A 5-day cotreatment with 10 M MK-886 potentiated the lipid increasing action of low concentrations of olanzapine. In contrast, in the presence of 50 M olanzapine nanomolar and low micromolar concentrations of MK-886 reduced lipid content. These data suggest that FLAP system in adipocytes is affected by olanzapine and that it may modify how these cells respond to the second-generation antipsychotic drugs (SGADs). Clinical studies could evaluate whether the FLAP/5-LOX system could play a role in setting a variable individual susceptibility to the metabolic side effects of SGADs

    Glucocorticoid receptors are required for up‐regulation of neuronal 5‐lipoxygenase (5LOX) expression by dexamethasone

    Full text link
    5‐lipoxygenase (5LOX) is the key enzyme in the synthesis of leukotrienes from arachidonic acid. Hyperglucocorticoidemia, dexamethasone, and aging up‐regulate 5LOX in the brain, including the cerebellum in vivo. We studied the mechanisms of dexamethasone‐triggered 5LOX up‐regulation in primary cultures of rat cerebellar granule neurons (CGN). We measured 5LOX mRNA and protein contents, and the formation of cysteinyl leukotrienes (LTC4, LTD4, and LTE4). The dexamethasone (0.1 μM or 1 μM)‐increased 5LOX mRNA and protein contents were already observed at 3 h of treatment, and they persisted for at least 24 h. Dexamethasone also increased the content of cysteinyl leukotrienes, assayed in the presence of 2 μM calcium ionophore A23187 and 10 μM arachidonic acid. The stimulatory effect of dexamethasone on 5LOX expression was inhibited by the glucocorticoid receptor (GR) antagonist RU486 and by reducing the CGN content of GR receptor protein with a GR‐specific antisense oligonucleotide. The 5LOX mRNA half‐life was longer in dexamethasone than in vehicle‐treated CGNs. Our results indicate that dexamethasone increases 5LOX expression in CGNs in a GR‐dependent manner and that it also increases the stability of 5LOX mRNA. Further studies are warranted to elucidate the physiologic/pathologic significance of glucocorticoid‐regulated expression of 5LOX in the central nervous system.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154349/1/fsb2fj000836fje-sup-0001.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154349/2/fsb2fj000836fje.pd

    Aminoglycoside antibiotics and autism: a speculative hypothesis

    Get PDF
    BACKGROUND: Recently, it has been suspected that there is a relationship between therapy with some antibiotics and the onset of autism; but even more curious, some children benefited transiently from a subsequent treatment with a different antibiotic. Here, we speculate how aminoglycoside antibiotics might be associated with autism. PRESENTATION: We hypothesize that aminoglycoside antibiotics could a) trigger the autism syndrome in susceptible infants by causing the stop codon readthrough, i.e., a misreading of the genetic code of a hypothetical critical gene, and/or b) improve autism symptoms by correcting the premature stop codon mutation in a hypothetical polymorphic gene linked to autism. TESTING: Investigate, retrospectively, whether a link exists between aminoglycoside use (which is not extensive in children) and the onset of autism symptoms (hypothesis "a"), or between amino glycoside use and improvement of these symptoms (hypothesis "b"). Whereas a prospective study to test hypothesis "a" is not ethically justifiable, a study could be designed to test hypothesis "b". IMPLICATIONS: It should be stressed that at this stage no direct evidence supports our speculative hypothesis and that its main purpose is to initiate development of new ideas that, eventually, would improve our understanding of the pathobiology of autism

    Effect of a short-term in vitro exposure to the marine toxin domoic acid on viability, tumor necrosis factor-alpha, matrix metalloproteinase-9 and superoxide anion release by rat neonatal microglia

    Get PDF
    BACKGROUND: The excitatory amino acid domoic acid, a glutamate and kainic acid analog, is the causative agent of amnesic shellfish poisoning in humans. No studies to our knowledge have investigated the potential contribution to short-term neurotoxicity of the brain microglia, a cell type that constitutes circa 10% of the total glial population in the brain. We tested the hypothesis that a short-term in vitro exposure to domoic acid, might lead to the activation of rat neonatal microglia and the concomitant release of the putative neurotoxic mediators tumor necrosis factor-α (TNF-α), matrix metalloproteinases-2 and-9 (MMP-2 and -9) and superoxide anion (O(2)-). RESULTS: In vitro, domoic acid [10 μM-1 mM] was significantly neurotoxic to primary cerebellar granule neurons. Although neonatal rat microglia expressed ionotropic glutamate GluR4 receptors, exposure during 6 hours to domoic acid [10 μM-1 mM] had no significant effect on viability. By four hours, LPS (10 ng/mL) stimulated an increase in TNF-α mRNA and a 2,233 % increase in TNF-α protein In contrast, domoic acid (1 mM) induced a slight rise in TNF-α expression and a 53 % increase (p < 0.01) of immunoreactive TNF-α protein. Furthermore, though less potent than LPS, a 4-hour treatment with domoic acid (1 mM) yielded a 757% (p < 0.01) increase in MMP-9 release, but had no effect on MMP-2. Finally, while PMA (phorbol 12-myristate 13-acetate) stimulated O(2)- generation was elevated in 6 hour LPS-primed microglia, a similar pretreatment with domoic acid (1 mM) did not prime O(2)- release. CONCLUSIONS: To our knowledge this is the first experimental evidence that domoic acid, at in vitro concentrations that are toxic to neuronal cells, can trigger a release of statistically significant amounts of TNF-α and MMP-9 by brain microglia. These observations are of considerable pathophysiological significance because domoic acid activates rat microglia several days after in vivo administration
    corecore